http://iet.metastore.ingenta.com
1887

Survey of automatic modulation classification techniques: classical approaches and new trends

Survey of automatic modulation classification techniques: classical approaches and new trends

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The automatic recognition of the modulation format of a detected signal, the intermediate step between signal detection and demodulation, is a major task of an intelligent receiver, with various civilian and military applications. Obviously, with no knowledge of the transmitted data and many unknown parameters at the receiver, such as the signal power, carrier frequency and phase offsets, timing information and so on, blind identification of the modulation is a difficult task. This becomes even more challenging in real-world scenarios with multipath fading, frequency-selective and time-varying channels. With this in mind, the authors provide a comprehensive survey of different modulation recognition techniques in a systematic way. A unified notation is used to bring in together, under the same umbrella, the vast amount of results and classifiers, developed for different modulations. The two general classes of automatic modulation identification algorithms are discussed in detail, which rely on the likelihood function and features of the received signal, respectively. The contributions of numerous articles are summarised in compact forms. This helps the reader to see the main characteristics of each technique. However, in many cases, the results reported in the literature have been obtained under different conditions. So, we have also simulated some major techniques under the same conditions, which allows a fair comparison among different methodologies. Furthermore, new problems that have appeared as a result of emerging wireless technologies are outlined. Finally, open problems and possible directions for future research are briefly discussed.

References

    1. 1)
      • J.A. Sills . Maximum-likelihood modulation classification for PSK/QAM. Proc. IEEE MILCOM , 57 - 61
    2. 2)
    3. 3)
      • Kim, K., Polydoros, A.: `Digital modulation classification: the BPSK versus QPSK case', Proc. IEEE MILCOM, 1988, p. 431–436.
    4. 4)
    5. 5)
      • C.-Y. Huang , A. Polydoros . Likelihood methods for MPSK modulation classification. IEEE Trans. Commun. , 1493 - 1504
    6. 6)
      • Sapiano, P.C., Martin, J.D.: `Maximum likelihood PSK classifier', Proc. ICASSP, 1996, p. 1010–1014.
    7. 7)
      • Long, C., Chugg, K., Polydoros, A.: `Further results in likelihood classification of QAM signals', Proc. IEEE MILCOM, 1994, p. 57–61.
    8. 8)
      • Hong, L., Ho, K.C.: `Classification of BPSK and QPSK signals with unknown signal level using the Bayes technique', Proc. IEEE ISCAS, 2003, p. IV.1–IV.4.
    9. 9)
    10. 10)
    11. 11)
      • Beidas, B.F., Weber, C.L.: `General framework for the high-order correlation domain', Proc. IEEE MILCOM, 1995, p. 180–185.
    12. 12)
      • Beidas, B.F., Weber, C.L.: `Higher-order correlation-based classification of asynchronous MFSK signal', Proc. IEEE MILCOM, 1996, p. 1003–1009.
    13. 13)
    14. 14)
      • Panagiotou, P., Anastasoupoulos, A., Polydoros, A.: `Likelihood ratio tests for modulation classification', Proc. IEEE MILCOM, 2000, p. 670–674.
    15. 15)
      • Chugg, K.M., Long, C.S., Polydoros, A.: `Combined likelihood power estimation and multiple hypothesis modulation classification', Proc. ASILOMAR, 1995, p. 1137–1141.
    16. 16)
      • Hong, L., Ho, K.C.: `BPSK and QPSK modulation classification with unknown signal level', Proc. IEEE MILCOM, 2000, p. 976–980.
    17. 17)
      • Hong, L., Ho, K.C.: `Modulation classification of BPSK and QPSK signals using a two element antenna array receiver', Proc. IEEE MILCOM, 2001, p. 118–122.
    18. 18)
      • Hong, L., Ho, K.C.: `An antenna array likelihood modulation classifier for BPSK and QPSK signals', Proc. IEEE MILCOM, 2002, p. 647–651.
    19. 19)
      • Lay, N., Polydoros, A.: `Per-survivor processing for channel acquisition, data detection and modulation classification', Proc. ASILOMAR, 1995, p. 170–174.
    20. 20)
      • Lay, N., Polydoros, A.: `Modulation classification of signals in unknown ISI environments', Proc. IEEE MILCOM, 1995, p. 170–174.
    21. 21)
      • Dobre, O.A., Zarzoso, J., Bar-Ness, Y., Su, W.: `On the classification of linearly modulated signals in fading channel', Proc. CISS Conf., March 2004, Princeton.
    22. 22)
      • Abdi, A., Dobre, O.A., Choudhry, R., Bar-Ness, Y., Su, W.: `Modulation classification in fading channels using antenna arrays', Proc. IEEE MILCOM, 2004.
    23. 23)
      • Boiteau, D., Le Martret, C.: `A generalized maximum likelihood framework for modulation', Proc. ICASSP, 1998, p. 2165–2168.
    24. 24)
      • Lesage, S., Tourneret, J., Djuric, P.M.: `Classification of digital modulations by MCMC sampling', Proc. ICASSP, 2001, p. 2553–2555.
    25. 25)
    26. 26)
      • Lin, Y.-C., Kuo, C.-C.J.: `Sequential modulation classification of dependent samples', Proc. ICASSP, 1996, p. 2690–2693.
    27. 27)
      • E.E. Azzouz , A.K. Nandi . (1996) , Automatic modulation recognition of communication signals.
    28. 28)
      • E.E. Azzouz , A.K. Nandi . Procedure for automation recognition of analogue and digital modulations. IEE Proc., Commun. , 259 - 266
    29. 29)
    30. 30)
      • Wong, M.L.D., Nandi, A.K.: `Automatic digital modulation recognition using spectral and statistical features with multi-layer perceptrons', Proc. Int. Symp. Signal Processing and its Applications, 2001, Kuala Lumpur, Malaysia, p. 390–393.
    31. 31)
    32. 32)
      • Hsue, S.Z., Soliman, S.S.: `Automatic modulation recognition of digitally modulated signals', Proc. IEEE MILCOM, 1989, p. 645–649.
    33. 33)
      • S.Z. Hsue , S.S. Soliman . Automatic modulation classification using zero crossing. IEE Proc. F., Radar Signal Process. , 459 - 464
    34. 34)
      • Assaleh, K., Farrell, K.R., Mammone, R.J.: `A new method of modulation classification for digitally modulated signals', Proc. IEEE MILCOM, 1992, p. 712–716.
    35. 35)
      • Farrell, K.R., Mammone, R.J.: `Modulation classification using a neural tree network', Proc. IEEE MILCOM, 1993, p. 1028–1032.
    36. 36)
      • Ho, K.C., Prokopiw, W., Chan, Y.T.: `Modulation identification by the wavelet transform', Proc. IEEE MILCOM, 1995, p. 886–890.
    37. 37)
      • K.C. Ho , W. Prokopiw , Y.T. Chan . Modulation identification of digital signals by the wavelet transform. IEE Proc., Radar, Sonar Navig. , 169 - 176
    38. 38)
      • Hong, L., Ho, K.C.: `Identification of digital modulation types using the wavelet transform', Proc. IEEE MILCOM, 1999, p. 427–431.
    39. 39)
    40. 40)
      • Deng, H., Doroslovacki, M., Mustafa, H., Xu, J., Koo, S.: `Instantaneous feature based algorithm for HF digital modulation classification', Proc. CISS Conf., Baltimore, March 2003.
    41. 41)
    42. 42)
      • Dai, W., Wang, Y., Wang, J.: `Joint power and modulation classification using second- and higher statistics', Proc. WCNC, 2002, p. 155–158.
    43. 43)
      • Hatzichristos, G., Fargues, M.P.: `A hierarchical approach to the classification of digital modulation types in multipath environments', Proc. ASILOMAR, 2001, p. 1494–1498.
    44. 44)
      • Yang, Y., Soliman, S.S.: `Optimum classifier for ', Proc. ICC, 1991, p. 1693–1697.
    45. 45)
    46. 46)
    47. 47)
      • Yang, Y., Soliman, S.S.: `Statistical moments based classifier for MPSK signals', Proc. GLOBECOM, 1991, p. 72–76.
    48. 48)
    49. 49)
    50. 50)
    51. 51)
      • Sapiano, P.C., Martin, J., Holbeche, R.: `Classification of PSK signals using the DFT of phase histogram', Proc. ICASSP, 1995, p. 1868–1871.
    52. 52)
      • Schreyogg, C., Reichert, J.: `Modulation classification of QAM schemes using the DFT of phase histogram combined with modulus information', Proc. IEEE MILCOM, 1997, p. 1372–1376.
    53. 53)
      • Swami, A., Barbarossa, S., Sadler, B.: `Blind source separation and signal classification', Proc. ASILOMAR, 2000, p. 1187–1191.
    54. 54)
      • Martret, C., Boiteau, D.M.: `Modulation classification by means of different order statistical moments', Proc. IEEE MILCOM, 1997, p. 1387–1391.
    55. 55)
      • DeSimio, M.P., Prescott, G.E.: `Adaptive generation of decision functions for classification of digitally modulated signals', Proc. NAECON, 1988, p. 1010–1014.
    56. 56)
      • Reichert, J.: `Automatic classification of communication signals using higher order statistics', Proc. ICASSP, 1992, p. 221–224.
    57. 57)
      • C. Schreyogg , C. Kittel , U. Kressel , J. Reichert . Robust classification of modulation types using spectral features applied to HMM. Proc. IEEE MILCOM , 1377 - 1381
    58. 58)
      • Marchand, P., Lacoume, J.L., Le Martret, C.: `Classification of linear modulations by a combination of different orders cyclic cumulants', Proc. Workshop on HOS, 1997, p. 47–51.
    59. 59)
      • Marchand, P., Lacoume, J.L., Le Martret, C.: `Multiple hypothesis classification based on cyclic cumulants of different orders', Proc. ICASSP, 1998, p. 2157–2160.
    60. 60)
      • Spooner, C.M.: `Classification of cochannel communication signals using cyclic cumulants', Proc. ASILOMAR, 1995, p. 531–536.
    61. 61)
      • Spooner, C.M., Brown, W.A., Yeung, G.K.: `Automatic radio-frequency environment analysis', Proc. ASILOMAR, 2000, p. 1181–1186.
    62. 62)
      • Spooner, C.M.: `On the utility of sixth-order cyclic cumulants for RF signal classification', Proc. ASILOMAR, 2001, p. 890–897.
    63. 63)
      • Dobre, O.A., Bar-Ness, Y., Su, W.: `Higher-order cyclic cumulants for high order modulation classification', Proc. IEEE MILCOM, 2003, p. 112–117.
    64. 64)
      • Dobre, O.A., Bar-Ness, Y., Su, W.: `Robust QAM modulation classification algorithm based on cyclic cumulants', Proc. WCNC, 2004, p. 745–748.
    65. 65)
      • Dobre, O.A., Abdi, A., Bar-Ness, Y., Su, W.: `Selection combining for modulation recognition in fading channels', Proc. IEEE MILCOM, 2005, p. 2499–2505.
    66. 66)
      • Venalainen, J., Terho, L., Koivunen, V.: `Modulation classification in fading multipath channel', Proc. ASILOMAR, 2002, p. 1890–1894.
    67. 67)
      • Stolman, V.J., Paranjpe, S., Orsak, G.C.: `A blind information theoretic approach to automatic signal classification', Proc. IEEE MILCOM, 1999, p. 447–451.
    68. 68)
      • Paris, B.-P., Orsak, G.C., Chen, H., Warke, N.: `Modulation classification in unknown dispersive environments', Proc. ICASSP, 1997, p. 3853–3856.
    69. 69)
    70. 70)
      • Lopatka, J., Pedzisz, M.: `Automatic modulation classification using statistical moments and fuzzy classifier', Proc. IEEE ICSP, 2000, p. 1500–1505.
    71. 71)
      • Hero, A.O., Mahram, H.H.: `Digital modulation classification using power moment matrices', Proc. ICASSP, 1998, p. 3285–3288.
    72. 72)
      • Mahram, H.H., Hero, A.O.: `Robust QAM modulation classification via moment matrices', Proc. PIMRC, 2000, p. 133–137.
    73. 73)
      • Mobasseri, B.G.: `Constellation shape as a robust signature for digital modulation recognition', Proc. IEEE MILCOM, 1999, p. 442–446.
    74. 74)
      • Huo, X., Donoho, D.L.: `A simple and robust modulation classification method via counting', Proc. ICASSP, 1998, p. 3289–3292.
    75. 75)
      • Donoho, D.L., Huo, X.: `Large-sample modulation classification using Hellinger representation', Proc. Signal Processing Advances in Wireless Communications, 1997, p. 133–137.
    76. 76)
      • Swami, A., Sadler, B.: `Modulation classification via hierarchical agglomerative cluster analysis', Proc. IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications, 1997, p. 141–144.
    77. 77)
      • Schreyogg, C.: `Identification of voiceband data signal constellations using a divisive cluster algorithm', Proc. IEEE Digital Signal Processing Workshop, 1996, p. 474–477.
    78. 78)
      • Taira, S., Murakami, E.: `Automatic classification of analogue modulation signals by statistical parameters', Proc. IEEE MILCOM, 1999, p. 202–206.
    79. 79)
      • Louis, C., Sehier, P.: `Automatic modulation recognition with a hierarchical neural network', Proc. IEEE MILCOM, 1994, p. 713–717.
    80. 80)
      • Yoshioka, H., Shirato, Y., Toyoda, I., Umehira, M.: `A fast modulation recognition technique using nearest neighbor rules with optimized threshold for modulation classification in Rayleigh fading channels', Proc. IEEE Wireless Personal Multimedia Communications Conf., 2002, p. 1049–1052.
    81. 81)
      • Chung, C.-D., Polydoros, A.: `Envelope-based classification schemes for continous-phase binary frequency-shift-keying modulations', Proc. IEEE MILCOM, 1994, p. 796–800.
    82. 82)
      • Zhijin, Z., Junna, S.: `A new method for modulation types recognition based on the time frequency representation', Proc. ICSP, 2002, p. 208–211.
    83. 83)
      • L.V. Dominguez , J.M.P. Borrallo , J.P. Garcia . A general approach to the automatic classification of radio communication signals. Signal Process. , 239 - 250
    84. 84)
      • Umebayashi, K., Ishii, S., Kohno, R.: `Blind adaptive estimation of modulation scheme for software defined radio', Proc. PIMRC, 2000, p. 43–47.
    85. 85)
      • Wood, S.L., Ready, M.J., Treichler, J.R.: `Constellation identification using the Radon transform', Proc. ICASSP, 1988, p. 1878–1881.
    86. 86)
      • Wood, S.L., Treichler, J.R.: `Performance of the Radon transform method for constellation identification', Proc. ASILOMAR, 1988, p. 119–123.
    87. 87)
      • Wood, S.L., Ready, M.J., Treichler, J.R.: `Modem constellation identification: A performance comparison of two methods', Proc. ICASSP, 1990, p. 1651–1654.
    88. 88)
      • Yu, Z., Shi, Y.Q., Su, W.: `M-ary frequency shift keying signal classification based on discrete Fourier transform', Proc. IEEE MILCOM, 2003, p. 1167–1172.
    89. 89)
    90. 90)
      • R. Nee , R. Prasad . (2000) OFDM for wireless multimedia communications.
    91. 91)
      • D. Grimaldi , S. Rapuano , G. Truglia . An automatic digitalmodulation classifier for measurements on telecommunicationnetworks. Proc. IEEE Instrumentation and Measurement Technology , 957 - 962
    92. 92)
      • Su, W., Kosinski, J.: `A survey of digital modulation recognition methods', Proc. International Signal Processing Conf., 2003, Dallas.
    93. 93)
      • Dobre, O.A., Abdi, A., Bar-Ness, Y., Su, W.: `Blind modulation classification: a concept whose time has come', Proc. IEEE Sarnoff Symp. on Advances in Wired and Wireless Communications, 18–19 April 2005, Princeton, p. 223–228.
    94. 94)
      • J.G. Proakis . (2001) An automatic digital modulation classifier for measurements on telecommunication networks, OFDM for wireless multimedia communications.
    95. 95)
      • H.L. van Trees . (2001) Detection, estimation and modulation theory—Part I.
    96. 96)
      • S.M. Kay . (1998) , Fundamental and statistical signal processing – detection theory.
    97. 97)
      • A.J. Paulraj , R. Nabar , D. Gore . (2003) Introduction to space-time wireless communications.
    98. 98)
    99. 99)
      • C.L. Nikias , A.P. Petropulu . (1993) , Higher-order spectra analysis. A nonlinear signal processing framework.
    100. 100)
    101. 101)
      • Barbarossa, S., Scaglione, A.: `Blind equalization using cost-functions matched to the signal constellations', Proc. ASILOMAR, 1997, p. 550–54.
    102. 102)
      • V. Dandawade , G.B. Giannakis . Asymptotic theory of mixed time averages kth- order cyclic-moment cumulant statistics. IEEE Trans. Inf. Theory , 216 - 232
    103. 103)
      • W.A. Gardner , C.M. Spooner . The cumulant theory of cyclostationary time-series. Part I: Foundation. IEEE Trans. Signal Process. , 3387 - 3408
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com_20050176
Loading

Related content

content/journals/10.1049/iet-com_20050176
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address