access icon free Gain enhancement of a dual-band WLAN microstrip antenna loaded with diagonal pattern metamaterials

This communication presents the gain enhancement of a dual-band WLAN microstrip antenna loaded with left-handed split-ring resonator metamaterials. A diagonal repeating pattern of metamaterial unit cells is integrated into the right corner of the substrate to enhance the gain in the lower WLAN band without distorting the upper band characteristics. The proposed antenna covers the different operating bands: 2.4–2.484 and 5.15–5.85 GHz (IEEE 802.11a and b/g/n) for WLAN applications. The gain improvement in the lower operating band is obtained around 3.69 dB which is explained by estimating the Green function of the metamaterial diagonal periodic pattern at the lower resonant frequency. The antenna provides high gain and efficiency and easily printable on a low-cost FR-4 substrate. The proposed antenna prototype is developed and tested and experimental results show an excellent agreement with the simulated one.

Inspec keywords: electromagnetic metamaterials; wireless LAN; antenna radiation patterns; microstrip antennas; multifrequency antennas; Green's function methods

Other keywords: Green function estimation; metamaterial unit cells; diagonal repeating pattern; gain improvement; operating bands; left-handed split-ring resonator metamaterials; dual-band WLAN microstrip antenna; frequency 5.15 GHz to 5.85 GHz; gain 3.69 dB; frequency 2.4 GHz to 2.484 GHz; metamaterial diagonal periodic pattern; low-cost FR-4 substrate; gain enhancement; WLAN band; IEEE 802.11a

Subjects: Mathematical analysis; Single antennas; Artificial electromagnetic wave materials and structures

References

    1. 1)
      • 7. Rajkumar, R., Kiran, K.U.: ‘A compact metamaterial multiband antenna for WLAN/WiMAX/ITUband applications’, Int. J. Electron. Commun. (AEÜ), 2016, 70, pp. 599604.
    2. 2)
      • 10. Rosaline, S.I., Raghavan, S.: ‘Design of split ring antennas for WLAN and WiMAX applications’, (in English), Microw. Opt. Technol. Lett., 2016, 58, (9), pp. 21172122.
    3. 3)
      • 16. Zhu, X., Guo, Y., Wu, W.: ‘A novel dual-band antenna for wireless communication applications’, IEEE Antennas Wirel. Propag. Lett, 2016, 15, pp. 516519.
    4. 4)
      • 19. Richard, N.E., Ziolkowski, W.: ‘Metamaterials physics and engineering explorations’ (IEEE Press, Wiley Interscience, USA), ISBN-13 978-0-471-76102-0.
    5. 5)
      • 20. Numan, A.B., Sharawi, M.S.: ‘Extraction of material parameters for metamaterials using a full-wave simulator’, IEEE Antennas Propag. Mag., 2013, 55, (5), pp. 202211(in English).
    6. 6)
      • 1. Zheng, Y., Gao, J., Zhou, Y., et al: ‘Metamaterial-based patch antenna with wideband RCS reduction and gain enhancement using improved loading method’, IET Microw. Antennas Propag., 2017, 11, (9), pp. 11831189.
    7. 7)
      • 2. Sang, L., Li1, X., Chen, T., et al: ‘Analysis and design of tapered slot antenna with high gain for ultra-wideband based on optimisation of the metamaterial unit layout’, IET Microw. Antennas Propag., 2017, 11, (6), pp. 907914.
    8. 8)
      • 18. HFSS ver.14, Ansoft Corporation. Pittsburgh, PA, USA.
    9. 9)
      • 23. Ziolkowski, R.W.: ‘Design, fabrication, and testing of double negative metamaterials’, (in English), IEEE Trans. Antennas Propag., 2003, 51, (7), pp. 15161529.
    10. 10)
      • 12. Kim, J.H., Ahn, C., Bang, J.: ‘Antenna gain enhancement using a holey superstrate’, IEEE Trans. Antennas Propag., 2016, 64, (3), pp. 11641167.
    11. 11)
      • 3. Gao, X., Cai, T., Zhu, L.: ‘Enhancement of gain and directivity for microstrip antenna using negative permeability metamaterial’, Int. J. Electron. Commun. (AEÜ), 2016, 70, pp. 880885.
    12. 12)
      • 8. Pirooj, A., Naser-Moghadasi, M., Zarrabi, F.B.: ‘Design of compact slot antenna based on split ring resonator for 2.45/5 GHz WLAN applications with circular polarization’, Microw. Opt. Technol. Lett., 2016, 58, (1), pp. 1216.
    13. 13)
      • 22. Smith, D.R., Vier, D.C., Koschny, T., et al: ‘Electromagnetic parameter retrieval from inhomogeneous metamaterials’, Phys. Rev. E, 2005, 71, (3), p. 11, Art. no. 036617 (in English).
    14. 14)
      • 6. Smyth, B.P., Barth, S., Iyer, A.K.: ‘Dual-band microstrip patch antenna using integrated uniplanar metamaterial-based EBGS’, IEEE Trans. Antennas Propag., 2016, 64, (12), pp. 50465053.
    15. 15)
      • 14. Dadgarpour, A., Zarghooni, B., Denidni, T.A., et al: ‘Dual-band radiation tilting endfire antenna for WLAN applications’, IEEE Antennas Wirel. Propag. Lett, 2016, 15, pp. 14661469.
    16. 16)
      • 4. Li, D., Szabó, Z., Qing, X., et al: ‘A high gain antenna with an optimized metamaterial inspired superstrate’, IEEE Trans. Antennas Propag., 2012, 60, (12), pp. 60186023.
    17. 17)
      • 13. Rivera-Albinoand, A., Balanis, C.A.: ‘Gain enhancement in microstrip patch antennas using hybrid substrates’, IEEE Antennas Wirel. Propag. Lett., 2013, 12, pp. 476479.
    18. 18)
      • 9. Sharma, S.K., Mulchandani, J.D., Gupta, D., et al: ‘Triple-band metamaterial-inspired antenna using FDTD technique for WLAN/WiMAX applications’, Int. J. Rf Micro. Cmp. Engg., 2015, 8, pp. 688695.
    19. 19)
      • 17. Cao, W., Zhang, B., Liu, A., et al: ‘Multifrequency and dual-mode patch antenna based on electromagnetic bandgap (EBG) structure’, IEEE Trans. Antennas Propag., 2012, 60, (12), pp. 60076012.
    20. 20)
      • 15. Zhu, S., Langley, R.: ‘Dual-band wearable textile antenna on an EBG substrate’, IEEE Trans. Antennas Propag., 2009, 57, (4), pp. 926935.
    21. 21)
      • 21. Gao, B., Yuen, M.M.F., Ye, T.T., et al: ‘Flexible frequency selective metamaterials for microwave applications’. Sci. Rep., 2017, 7, 45108, doi: 10.1038/srep45108.
    22. 22)
      • 11. Capolino, F.: ‘Theory and phenomena of metamaterials’ (Taylor and Francis Group, LLC, 2009).
    23. 23)
      • 5. Niroo-jazi, M., Denidni, T.A., Chaharmir1, M.R., et al: ‘Meta-surfaces and antennas’ radiation characteristics enhancement: planar microstrip and microstrip-based quasi-aperture antennas’, IET Microw. Antennas Propag., 2014, 8, (12), pp. 901911.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.0170
Loading

Related content

content/journals/10.1049/iet-com.2018.0170
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading