access icon free Concatenated physical layer encryption scheme based on rateless codes

A novel concatenated physical-layer encryption (CPLE) scheme is proposed in this study, where better security can be achieved as well as reliability advantage. In CPLE scheme, the encryption is embedded in rateless encoding. The secret key, which is generated from wireless channel, controls the random degree and random linear combination. The rateless codes are also concatenated with other conventional channel codes, which can achieve better reliability. Different from security codes, both the security and reliability in the proposed scheme can be improved. Furthermore, there is no extra computation requirement on decoding process. Security analysis is presented including time complexity comparison and attacks resistance in practical application. Compared to other PLE schemes, the proposed scheme achieves lower complexity, and higher channel adaptation and performance advantage. On the basis of National Institute of Standards and Technology statistical test suite, CPLE scheme can achieve randomness as the traditional cipher system such as advanced encryption standard. Furthermore, simulation results show that the CPLE scheme outperforms the conventional concatenated codes at the same coderate.

Inspec keywords: decoding; computational complexity; cryptography; channel coding; wireless channels; random codes; telecommunication security; statistical testing; telecommunication network reliability

Other keywords: code rate; reliability; concatenated physical-layer encryption scheme; attack resistance; cipher system; random degree control; decoding process; National Institute of Standards and Technology statistical test suite; channel adaptation; time complexity; secret key; advanced encryption standard; conventional channel codes; security analysis; wireless channel; CPLE scheme; PLE schemes; random linear combination; security codes; rateless codes

Subjects: Other topics in statistics; Codes; Other topics in statistics; Reliability; Cryptography; Cryptography theory

References

    1. 1)
      • 24. Adamo, O., Fu, S., Varanasi, M.R.: ‘Physical layer error correction based cipher’. Global Telecommunications Conf., Miami, Florida, USA, 2010.
    2. 2)
      • 13. Baldi, M., Bianchi, M., Chiaraluce, F.: ‘Non-systematic codes for physical layer security’. Information Theory Workshop, Cairo, Egypt, 2010.
    3. 3)
      • 16. Harrison, W.K., Boyce, P.: ‘Parity modifications and stopping sets in high-rate codes for physical-layer security’. Communications and Network Security, San Francisco, CA, USA, 2014.
    4. 4)
      • 21. Niu, H., Iwai, M., Sezaki, K., et al: ‘Exploiting fountain codes for secure wireless delivery’, IEEE Commun. Lett., 2014, 18, (18), pp. 777780.
    5. 5)
      • 8. Bi, S., Yuan, X., Ying, J., et al: ‘Pragmatic physical layer encryption for achieving perfect secrecy’, 2012, arXiv: 1210.5599v1.
    6. 6)
      • 5. Ahmad, A., Biri, A., Afifi, H.: ‘Study of a new physical layer encryption concept’. IEEE Int. Conf. Mobile Ad Hoc and Sensor Systems, Atlanta, Georgia, 2008.
    7. 7)
      • 1. Liu, Y., Chen, H.H., Wang, L.: ‘Physical layer security for next generation wireless networks: theories, technologies, and challenges’, IEEE Commun. Surv. Tutor., 2016, PP, (99), p. 1.
    8. 8)
      • 26. Luby, M.: ‘LT codes’, 2002, pp. 271280.
    9. 9)
      • 42. Ahmad, A., Amin, M., Farooq, M.: ‘Analyzing directional modulation techniques as block encryption ciphers for physical layer security’. Wireless Communications and NETWORKING Conf., San Francisco, CA, 2017.
    10. 10)
      • 3. Xu, L., Fang, H., Lin, Z.: ‘Evolutionarily stable opportunistic spectrum access in cognitive radio networks’, IET Commun., 2016, 10, (17), pp. 22902299.
    11. 11)
      • 23. Sun, L., Ren, P., Du, Q., et al: ‘Fountain-coding aided strategy for secure cooperative transmission in industrial wireless sensor networks’, IEEE Trans. Ind. Inf., 2016, 12, (1), pp. 291300.
    12. 12)
      • 33. Cheng, T., Sivakumar, K., Belzer, B.J.: ‘Serially concatenated IRA codes’, arXiv: 0709.4466v1, 2007.
    13. 13)
      • 19. Lai, H., Xiao, J., Orgun, M.A., et al: ‘Quantum direct secret sharing with efficient eavesdropping-check and authentication based on distributed fountain codes’, Quantum Inf. Process., 2014, 13, (4), pp. 895907.
    14. 14)
      • 10. Huo, F., Gong, G.: ‘XOR encryption versus phase encryption, an in-depth analysis’, IEEE Trans. Electromagn. Compat., 2015, 57, (4), pp. 903911.
    15. 15)
      • 36. Grassl, M., Shor, P., Smith, G., et al: ‘Generalized concatenated quantum codes’, Phys. Rev. A, 2009, 79, (5), pp. 17441747.
    16. 16)
      • 28. Palanki, R., Yedidia, J.S.: ‘Rateless codes on noisy channels’. Proc. Int. Symp. Information Theory 2004 ISIT 2004, Chicago, Illinois, 2004.
    17. 17)
      • 2. Fang, H., Xu, L., Wang, X.: ‘Coordinated multiple-relays based physical-layer security improvement: a single-leader multiple-followers Stackelberg game scheme’, IEEE Trans. Inf. Forensics Sec., 2017, 13, (1), pp. 197209.
    18. 18)
      • 7. Tahir, M., Jarot, S.P.W., Siddiqi, M.U.: ‘Wireless physical layer security using encryption and channel pre-compensation’. 2010 Int. Conf. Computer Applications and Industrial Electronics (ICCAIE), Kuala Lumpur, Malaysia, 2010.
    19. 19)
      • 38. Teimouri, M., Motlagh, H.K.: ‘Reverse engineering of communications networks: evolution and challenges’, 2017.
    20. 20)
      • 39. Huang, Y., Lei, J., Wei, J.: ‘Joint network and fountain codes design for relay-assisted multi-user system’, China Commun., 2015, 12, (7), pp. 96107.
    21. 21)
      • 14. Harrison, W.K., Almeida, J., Mclaughlin, S.W., et al: ‘Physical-layer security over correlated erasure channels’. IEEE Int. Conf. Communications, Kyoto, Japan, 2011.
    22. 22)
      • 30. Forney, G.D., Forney, G.D.: ‘Concatenated codes’, vol. 11 (Citeseer, 1966).
    23. 23)
      • 6. Kanter, G.S., Reilly, D., Smith, N.: ‘Practical physical-layer encryption: the marriage of optical noise with traditional cryptography’, IEEE Commun. Mag., 2009, 47, (11), pp. 7481.
    24. 24)
      • 9. Bi, S., Yuan, X., Zhang, Y.J.: ‘DFT-based physical layer encryption for achieving perfect secrecy’. 2013 IEEE Int. Conf. on Communications (ICC), Budapest, Hungary, 2013.
    25. 25)
      • 35. Bonik, G., Goreinov, S., Zamarashkin, N.: ‘Construction and analysis of polar and concatenated polar codes: practical approach’, arXiv: 1207.4343v1, 2012.
    26. 26)
      • 41. Althunibat, S., Sucasas, V., Rodriguez, J.: ‘A physical-layer security scheme by phase-based adaptive modulation’, IEEE Trans. Veh. Technol., 2017, 66, (11), pp. 99319942.
    27. 27)
      • 17. Zeng, Y., Wang, X., Liu, Z., et al: ‘Reliable enhanced secure code dissemination with rateless erasure codes in WSNs’, J. Softw., 2014, 9, (1), pp. 190194.
    28. 28)
      • 12. Yang, X., Shen, Z., Hu, X., et al: ‘Physical layer encryption algorithm for chaotic optical OFDM transmission against chosen-plaintext attacks’. Int. Conf. Transparent Optical Networks, Trento, Italy, 2016.
    29. 29)
      • 25. Chai, Q., Gong, G.: ‘Differential cryptanalysis of two joint encryption and error correction schemes’. Global Telecommunications Conf., Jounieh, Lebanon, 2012.
    30. 30)
      • 32. Wang, Z., Zhang, M.: ‘A serial concatenated scheme for LDPC code to achieve better error correction performance’. 2012 Second Int. Conf. Consumer Electronics, Communications and Networks (CECNet), YiChang, Hubei, China, 2012.
    31. 31)
      • 20. Bohli, J.M., Hessler, A., Ugus, O., et al: ‘Security enhanced multi-hop over the air reprogramming with fountain codes’. IEEE Conf. Local Computer Networks 2009 LCN 2009, Zurich, Switzerland, 2009.
    32. 32)
      • 18. Yong, Z., Xin, W., Lihua, D., et al: ‘Out-of-order-delivery-tolerant secure code dissemination with fountain codes in wireless sensor networks’. Eighth Int. Conf. Computational Intelligence and Security, Guangzhou, China, 2012.
    33. 33)
      • 11. Zhang, J., Marshall, A., Woods, R., et al: ‘Design of an OFDM physical layer encryption scheme’, IEEE Trans. Veh. Technol., 2017, 66, (3), pp. 21142127.
    34. 34)
      • 29. Etesami, O., Shokrollahi, A.: ‘Raptor codes on binary memoryless symmetric channels’, IEEE Trans. Inf. Theory, 2006, 52, (5), pp. 20332051.
    35. 35)
      • 27. Shokrollahi, A.: ‘Raptor codes’, IEEE Trans. Inf. Theory, 2006, 14, (SI), pp. 25512567.
    36. 36)
      • 15. Harrison, W.K., Almeida, J., Bloch, M.R., et al: ‘Coding for secrecy: an overview of error-control coding techniques for physical-layer security’, IEEE Signal Process. Mag., 2013, 30, (5), pp. 4150.
    37. 37)
      • 22. Yi, M., Ji, X., Huang, K., et al: ‘Achieving strong security based on fountain code with coset pre-coding’, IET Commun., 2014, 8, (14), pp. 24762483.
    38. 38)
      • 4. Zuquete, A., Barros, J.: ‘Physical-layer encryption with stream ciphers’. IEEE Int. Symp. Information Theory 2008 ISIT 2008, Toronto, 2008.
    39. 39)
      • 31. Perotti, A., Montorsi, G., Benedetto, S.: ‘Performance analysis and optimization of concatenated block-turbo coding schemes’. IEEE Int. Conf. Communications, Paris, France, 2004.
    40. 40)
      • 37. Luby, M.G., Mitzenmacher, M., Shokrollahi, M.A.: ‘Analysis of random processes via AND/OR tree evaluations’. Proc. Ninth Annual ACM-SIAM Symp. Discrete Algorithms SODA 1998, San Francisco, California, 1998.
    41. 41)
      • 40. Lu-Ying, L.I., Zong-Yan, L.I., Wang, W.B.: ‘Adaptive iteration for fountain decoding’, J. China Univ. Posts Telecommun., 2010, 17, (Suppl 2), pp. 2225.
    42. 42)
      • 34. Zheng, W., Jie, L.: ‘Fountain communication using concatenated codes’, IEEE Trans. Commun., 2009, 61, (2), pp. 443454.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.1234
Loading

Related content

content/journals/10.1049/iet-com.2017.1234
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading