Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Adaptive multichannel MAC protocol based on SD-TDMA mechanism for the vehicular ad hoc network

In this study, the design of an adaptive medium access control (MAC) protocol based on the space-division–time-division multiple access (SD-TDMA) mechanism is presented to improve the utilisation and fairness of the time-slot allocation scheme in the vehicular ad hoc network. The SD-TDMA mechanism dynamically allocates time-slots owing to a dynamic topology. This protocol reduces transmission collisions through user detection procedures. Most users can thus access the service channel (SCH) without conflict and acquire time slots according to the mapping between geographic locations and time slots. Users failing to access the channel in user detection procedures can send request access packets in security channels to again participate in SCH time-slot allocation during the SCH interval. Simulations are conducted to evaluate the performance of the proposed method in urban scenarios. The SD-TDMA mechanism is compared with an SDMA-based MAC protocol, the IEEE 802.11p distributed coordination function and an MAC protocol based on transmission sequences. Owing to the decreased rate of transmission collisions and the dynamic time-slot allocation scheme, it is shown that the SD-TDMA mechanism provides a significantly higher utilisation of time slots and better fairness of data transmission than existing approaches.

References

    1. 1)
      • 2. Jiang, X., Du, D.H.C.: ‘PTMAC: a prediction-based TDMA MAC protocol for reducing packet collisions in VANET’, IEEE Trans. Veh. Technol., 2016, 65, (11), pp. 92099223.
    2. 2)
      • 19. Zhang, R., Yan, F., Shen, L., et al: ‘A vehicle positioning method based on joint TOA and DOA estimation with V2R communications’. 2017 IEEE 85th Vehicular Technology Conf., Sydney, Australia, June 2017, pp. 15.
    3. 3)
      • 7. Hadded, M., Muhlethaler, P., Laouiti, A., et al: ‘TDMA-based MAC protocols for vehicular ad hoc networks: a survey, qualitative analysis, and open research issues’, Commun. Surv. Tutor., 2015, 17, (4), pp. 24612492.
    4. 4)
      • 15. Zhang, Y., Shum, K.W., Wong, W.S., et al: ‘Binary sequences for multiple access collision channel: identification and synchronization’, IEEE Trans. Commun., 2014, 62, (2), pp. 667675.
    5. 5)
      • 8. Babu, S., Patra, M., Murthy, C.S.R.: ‘An efficient TDMA-based variable interval multichannel MAC protocol for vehicular networks’, Wirel. Netw., 2015, 22, (4), pp. 116.
    6. 6)
      • 3. Bilstrup, K., Uhlemann, E., Strom, E.G., et al: ‘Evaluation of the IEEE 802.11p MAC method for vehicle-to-vehicle communication’. IEEE Vehicular Technology Conf. VTC, Calgary, BC, Canada, September 2008, pp. 15.
    7. 7)
      • 12. Blum, J.J., Eskandarian, A.: ‘A reliable link-layer protocol for robust and scalable intervehicle communications’, IEEE Trans. Intell. Transp. Syst., 2007, 8, (1), pp. 413.
    8. 8)
      • 6. Qiu, H.J.F., Ho, W.H., Chi, K.T., et al: ‘A methodology for studying 802.11p VANET broadcasting performance with practical vehicle distribution’, IEEE Trans. Veh. Technol., 2015, 64, (10), pp. 47564769.
    9. 9)
      • 16. Wu, Y., Shum, K.W., Wong, W.S., et al: ‘Safety-message broadcast in vehicular ad hoc networks based on protocol sequences’, IEEE Trans. Veh. Technol., 2014, 63, (3), pp. 14671479.
    10. 10)
      • 4. Wang, Q., Leng, S., Fu, H., et al: ‘An IEEE 802.11p-based multichannel MAC scheme with channel coordination for vehicular ad hoc networks’, IEEE Trans. Intell. Transp. Syst., 2012, 13, (2), pp. 449458.
    11. 11)
      • 18. Doukha, Z., Moussaoui, S.: ‘An SDMA-based mechanism for accurate and efficient neighbourhood-discovery link-layer service’, IEEE Trans. Veh. Technol., 2016, 65, (2), pp. 603613.
    12. 12)
      • 20. Omar, H.A., Zhuang, W., Abdrabou, A., et al: ‘Performance evaluation of VeMAC supporting safety applications in vehicular networks’, IEEE Trans. Emerg. Top. Comput., 2013, 1, (1), pp. 6983.
    13. 13)
      • 5. Dang, D.N.M., Hong, C.S., Lee, S., et al: ‘An efficient and reliable MAC in VANETs’, IEEE Commun. Lett., 2014, 18, (4), pp. 616619.
    14. 14)
      • 1. Omar, H.A., Zhuang, W., Li, L.: ‘VeMAC: a TDMA-based MAC protocol for reliable broadcast in VANETs’, IEEE Trans. Mob. Comput., 2013, 12, (9), pp. 17241736.
    15. 15)
      • 13. Javed, M.A., Khan, J.Y., Ngo, D.T.: ‘Joint space-division multiple access and adaptive rate control for basic safety messages in VANETs’. IEEE Wireless Communications and Networking Conf. (WCNC), Istanbul, Turkey, April 2014, pp. 26882693.
    16. 16)
      • 9. Borgonovo, F., Capone, A., Cesana, M., et al: ‘RR-ALOHA, a reliable R-ALOHA broadcast channel for ad-hoc inter-vehicle communication networks’. Proc. the Mediterranean Ad hoc networking Conference, Med-Hoc-Net, Sardegna, Italy, September 2002.
    17. 17)
      • 17. Cai, L., Xu, Z., Wu, Y., et al: ‘Transmission sequence reconstruction and allocation for VANET’. IEEE Int. Conf. Computer Information Telecommunication Systems, Kunming, China, July 2016, pp. 15.
    18. 18)
      • 23. Misra, S., Khatua, M.: ‘Packet-centric trade-off and unfair success region in IEEE 802.11 WLANs’, IEEE Trans. Veh. Technol., 2017, 66, (5), p. 1.
    19. 19)
      • 14. Wong, W.S.: ‘Transmission sequence design and allocation for wide-area ad hoc networks’, IEEE Trans. Veh. Technol., 2014, 63, (2), pp. 869878.
    20. 20)
      • 11. Bana, S.V., Varaiya, P.: ‘Space division multiple access (SDMA) for robust ad hoc vehicle communication networks’. Proc. IEEE Intelligent Transportation Systems, Oakland, CA, USA, August 2001, pp. 962967.
    21. 21)
      • 21. Booysen, M.J., Zeadally, S., Rooyen, G.J.V.: ‘Performance comparison of media access control protocols for vehicular ad hoc networks’, IET Netw., 2012, 1, (1), pp. 1019.
    22. 22)
      • 10. Borgonovo, F., Capone, A., Cesana, M., et al: ‘ADHOC MAC: new MAC architecture for ad hoc networks providing efficient and reliable point-to-point and broadcast services’, Wirel. Netw., 2004, 10, (4), pp. 359366.
    23. 23)
      • 22. Mittag, J., Thomas, F., Hartenstein, H.: ‘A comparison of single- and multi-hop beaconing in VANETs’. ACM Int. Workshop Vehicular Internetworking, Beijing, China, September 2009, pp. 6978.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.1072
Loading

Related content

content/journals/10.1049/iet-com.2017.1072
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address