Secrecy performance of hybrid satellite-terrestrial relay networks in the presence of multiple eavesdroppers

Secrecy performance of hybrid satellite-terrestrial relay networks in the presence of multiple eavesdroppers

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study investigates the secrecy performance of a hybrid satellite-terrestrial relay network (HSTRN) in the presence of multiple eavesdroppers, where the satellite link undergoes Shadowed-Rician fading, while the terrestrial link follows Rayleigh fading. The authors suppose the direct link between the satellite and the intended user is unavailable due to heavy shadowing and adopt a multi-antenna relay using either a decode-and-forward (DF) or an amplify-and-forward (AF) protocol to assist the transmission. By employing perfect channel state information of each link at the relay, the authors first apply receive maximal ratio combining beamforming (BF) and transmit zero-forcing BF schemes to obtain the output signal-to-noise ratios (SNRs) of the intended user and eavesdroppers. Then, based on the Meijer-G function and the moment generating function, the authors derive the analytical expressions of the ergodic secrecy rate for the considered HSTRN for both DF and AF protocols. Finally, Monte-Carlo simulations are conducted to validate the theoretical performance analysis and reveal the effects of certain representative parameters on the system secrecy performance.


    1. 1)
      • 1. Evans, B., Werner, M., Lutz, E., et al: ‘Integration of satellite and terrestrial systems in future multimedia communications’, IEEE Wirel. Commun., 2005, 12, (5), pp. 7280.
    2. 2)
      • 2. Li, M., Lin, M., Yu, Q., et al: ‘Optimal beamformer design for dual-Hop MIMOAF relay networks over Rayleigh fading channels’, IEEE J. Sel. Areas Commun., 2012, 30, (8), pp. 14021414.
    3. 3)
      • 3. Bhatnagar, M.R.: ‘Making two-way satellite relaying feasible: a differential modulation based approach’, IEEE Trans. Commun., 2015, 63, pp. 28362847.
    4. 4)
      • 4. Arti, M.K.: ‘Two-way satellite relaying with estimated channel gains’, IEEE Trans. Commun., 2016, 64, pp. 28082820.
    5. 5)
      • 5. Arti, M.K., Bhatnagar, M.R.: ‘Two-way mobile satellite relaying: a beamforming and combining based approach’, IEEE Commun. Lett., 2014, 18, pp. 11871190.
    6. 6)
      • 6. An, K., Lin, M., Ouyang, J., et al: ‘Symbol error analysis of hybrid satellite-terrestrial cooperative networks with cochannel interference’, IEEE Commun. Lett., 2014, 18, pp. 19471950.
    7. 7)
      • 7. Arti, M.K., Bhatnagar, M.R.: ‘Beamforming and combining in hybrid satellite-terrestrial cooperative systems’, IEEE Commun. Lett., 2014, 18, pp. 483486.
    8. 8)
      • 8. Lin, M., Ouyang, J., Zhu, W.P.: ‘On the performance of hybrid satellite-terrestrial cooperative networks with interferences’. 48th Asilomar Conf. on Signals, Systems and Computers, 2014, pp. 17961800.
    9. 9)
      • 9. An, K., Lin, M., Liang, T., et al: ‘Performance analysis of multi-antenna hybrid satellite-terrestrial relay networks in the presence of interference’, IEEE Trans. Commun., 2015, 63, pp. 43904404.
    10. 10)
      • 10. Ruan, Y., Li, Y., Zhang, R., et al: ‘Performance analysis of hybrid satellite-terrestrial cooperative networks with distributed alamouti code’. IEEE 83rd Vehicular Technology Conf. (VTC Spring), 2016, pp. 15.
    11. 11)
      • 11. Zhao, H., Pan, Z.: ‘Distributed relay selection strategy based on physical-layer fairness for amplify-and-forward relaying systems’, IET Commun., 2016, 10, pp. 22612268.
    12. 12)
      • 12. Arti, M.K., Jain, V.: ‘Relay selection based hybrid satellite-terrestrial communication systems’, IET Commun., 2017, 11, pp. 25662574.
    13. 13)
      • 13. Mukherjee, A., Fakoorian, S.A.A., Huang, J., et al: ‘Principles of physical layer security in multiuser wireless networks: a survey’, IEEE Commun. Surv. Tutor., 2014, 16, pp. 15501573.
    14. 14)
      • 14. Wyner, A.D.: ‘The wire-tap channel’, Bell Syst. Tech. J., 1975, 54, pp. 13551387.
    15. 15)
      • 15. Zou, Y., Zhu, J., Yang, L., et al: ‘Securing physical-layer communications for cognitive radio networks’, IEEE Commun. Mag., 2015, 53, pp. 4854.
    16. 16)
      • 16. Jiang, L., Zhu, H., Vazquez-Castro, M.A., et al: ‘Secure satellite communication systems design with individual secrecy rate constraints’, IEEE Trans. Inf. Forensics Sec., 2011, 6, pp. 661671.
    17. 17)
      • 17. Zheng, G., Arapoglou, P.D., Ottersten, B.: ‘Physical layer security in multibeam satellite systems’, IEEE Trans. Wirel. Commun., 2012, 11, pp. 852863.
    18. 18)
      • 18. An, K., Lin, M., Ouyang, J., et al: ‘Secure transmission in cognitive satellite terrestrial networks’, IEEE J. Sel. Areas Commun., 2016, 34, pp. 30253037.
    19. 19)
      • 19. An, K., Lin, M., Liang, T., et al: ‘Secure transmission in multi-antenna hybrid satellite-terrestrial relay networks in the presence of eavesdropper’. Int. Conf. on Wireless Communications & Signal Processing, 2015, pp. 15.
    20. 20)
      • 20. Abdi, A., Lau, W.C., Alouini, M.S., et al: ‘A new simple model for land mobile satellite channels: first- and second-order statistics’, IEEE Trans. Wirel. Commun., 2003, 2, pp. 519528.
    21. 21)
      • 21. Zheng, G., Wong, K.K., Paulraj, A., et al: ‘Collaborative-relay beamforming with perfect CSI: optimum and distributed implementation’, IEEE Signal. Process. Lett., 2009, 16, pp. 257260.
    22. 22)
      • 22. Chen, L., Wong, K.K., Chen, H., et al: ‘Optimizing transmitter-receiver collaborative-relay beamforming with perfect CSI’, IEEE Commun. Lett., 2011, 15, pp. 314316.
    23. 23)
      • 23. Sreng, S., Escrig, B., Boucheret, M.L.: ‘Exact symbol error probability of hybrid/integrated satellite-terrestrial cooperative network’, IEEE Trans. Wirel. Commun., 2013, 12, pp. 13101319.
    24. 24)
      • 24. Yang, L., Hasna, M.O.: ‘Performance analysis of amplify-and-forward hybrid satellite-terrestrial networks with cochannel interference’, IEEE Trans. Commun., 2015, 63, pp. 50525061.
    25. 25)
      • 25. Iqbal, A., Ahmed, K.M.: ‘A hybrid satellite-terrestrial cooperative network over non identically distributed fading channels’, J. Commun., 2011, 6, pp. 581589.
    26. 26)
      • 26. Bhatnagar, M.R., Arti, M.K.: ‘Performance analysis of hybrid satellite-terrestrial FSO cooperative system’, IEEE Photonics Technol. Lett., 2013, 25, pp. 21972200.
    27. 27)
      • 27. Arti, M.K.: ‘A Novel beamforming and combining scheme for two-way AF satellite systems’, IEEE Trans. Veh. Technol., 2017, 66, pp. 12481256.
    28. 28)
      • 28. Wang, L., Elkashlan, M., Duong, T.Q., et al: ‘Secure communication in cellular networks: The benefits of millimeter wave mobile broadband’. IEEE Int. Workshop on Signal Processing Advances in Wireless Communications, Toronto, Canada, 2014, pp. 115119.
    29. 29)
      • 29. Dong, L., Han, Z., Petropulu, A.P., et al: ‘Secure wireless communications via cooperation’. IEEE 2008 46th Annual Allerton Conf. on Communication, Control, and Computing, 2008, pp. 11321138.
    30. 30)
      • 30. Hwang, K.S., Ju, M.C.: ‘Secrecy outage probability of amplify-and-forward transmission with multi-antenna relay in presence of eavesdropper’. IEEE Int. Conf. on Communications, 2014, pp. 54085412.
    31. 31)
      • 31. Ding, Z., Leung, K.K., Goeckel, D.L., et al: ‘On the application of cooperative transmission to secrecy communications’, IEEE J. Sel. Areas Commun., 2012, 30, pp. 359368.
    32. 32)
      • 32. Bhatnagar, M.R., Arti, M.K.: ‘On the closed-form performance analysis of maximal ratio combining in shadowed-Rician fading LMS channels’, IEEE Commun. Lett., 2014, 18, pp. 5457.
    33. 33)
      • 33. Gradshteyn, I.S., Ryzhik, I.M.: ‘Table of integrals, series, and products’ (Academic press, 2007, 7th edn.).
    34. 34)
      • 34. Arti, M.K., Jindal, S.K.: ‘OSTBC transmission in shadowed-Rician land mobile satellite links’, IEEE Trans. Veh. Technol., 2016, 65, pp. 57715777.
    35. 35)
      • 35. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: ‘Integrals and series’, vol. 3 (Gordon and Breach Science Publishers, 1990, 1st edn.).
    36. 36)
      • 36. Adamchik, V.S., Marichev, O.I.: ‘The algorithm for calculating integrals of hypergeometric type functions and its realization in REDUCE system’. International Symp. on Symbolic and Algebraic Computation, 1990, pp. 212224.
    37. 37)
      • 37. Renzo, M.D., Graziosi, F., Santucci, F.: ‘Channel capacity over generalized fading channels: a novel MGF-based approach for performance analysis and design of wireless communication systems’, IEEE Trans. Veh. Technol., 2010, 59, pp. 127149.
    38. 38)
      • 38. Agarwal, R.P.: ‘On certain transformation formulae and Meijer's G-function of two variables’, Indian J. Pure Appl. Math., 1970, 1, pp. 537551.
    39. 39)
      • 39. An, K., Lin, M., Zhu, W.P., et al: ‘Outage performance of cognitive hybrid satellite terrestrial networks with interference constraint’, IEEE Trans. Veh. Technol., 2016, 65, pp. 93979404.

Related content

This is a required field
Please enter a valid email address