SEFDM over satellite systems with advanced interference cancellation

SEFDM over satellite systems with advanced interference cancellation

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

For high data rates satellite systems, where multiple carriers are frequency division multiplexed with a slight overlap, the overall spectral efficiency is limited. This work applies highly overlapped carriers for satellite broadcast and broadband scenarios to achieve higher spectral efficiency. Spectrally efficient frequency division multiplexing (SEFDM) compresses subcarrier spacing to increase the spectral efficiency at the expense of orthogonality violation. SEFDM systems performance degrades compared to orthogonal signals, unless efficient interference cancellation is used. Turbo equalisation with interference cancellation is implemented to improve receiver performance for variable coding, compression and modulation/constellation proposals that may be applied in satellite communications settings. Such parameters may be set to satisfy pre-defined spectral efficiency values for a given quality index or associated application. Assuming low-density parity check coded data, the work proposes two approaches to receiver design: a simple matched filter approach and an approach utilising an iterative interference cancellation structure specially designed for SEFDM. Mathematical models and simulations studies are presented indicating promising gains to be achieved for SEFDM transmission with advanced transceiver architectures at the cost of increased complexity at the receiver.


    1. 1)
      • 1. Piemontese, A., Modenini, A., Colavolpe, G., et al: ‘Improving the spectral efficiency of nonlinear satellite systems through time-frequency packing and advanced receiver processing’, IEEE Trans. Commun., 2013, 61, (8), pp. 34043412.
    2. 2)
      • 2. Digital Video Broadcasting (DVB):‘Second generation framing structure’, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications; part 2: DVB-S2 extensinos (DVB-S2X), Technical report, European Standard (Telecommunications series), October 2014.
    3. 3)
      • 3. Ugolini, A., Zanettini, Y., Piemontese, A., et al: ‘Efficient satellite systems based on interference management and exploitation’. 2016 50th Asilomar Conf. Signals, Systems and Computers, Pacific Grove, 2016, pp. 492496.
    4. 4)
      • 4. Hwang, T., Yang, C., Wu, G., et al: ‘OFDM and its wireless applications: a survey’, IEEE Trans. Veh. Technol., 2009, 58, (4), pp. 16731694.
    5. 5)
      • 5. Zhou, J., Qiao, Y., Yang, Z., et al: ‘Capacity limit for faster-than-Nyquist non-orthogonal frequency-division multiplexing signaling’, Sci. Rep., 2017, 3380.
    6. 6)
      • 6. Mazo, J.: ‘Faster-than-Nyquist Signaling’, Bell Syst. Tech. J., 1975, 54, (8), pp. 14511462.
    7. 7)
      • 7. Rodrigues, M., Darwazeh, I.: ‘A spectrally efficient frequency division multiplexing based communications system’. Proc. 8th Int. OFDM Workshop, Hamburg, November 2003, pp. 4849.
    8. 8)
      • 8. Rusek, F., Anderson, J.: ‘Multistream faster than Nyquist signaling’, IEEE Trans. Commun., 2009, 57, (5), pp. 13291340.
    9. 9)
      • 9. Anderson, J.B., Rusek, F., Öwall, V.: ‘Faster-than-Nyquist signaling’, Proc. IEEE, 2013, 101, (8), pp. 18171830.
    10. 10)
      • 10. Barbieri, A., Fertonani, D., Colavolpe, G.: ‘Time-frequency packing for linear modulations: spectral efficiency and practical detection schemes’, IEEE Trans. Commun., 2009, 57, (10), pp. 29512959.
    11. 11)
      • 11. Whatmough, P.N., Perrett, M.R., Isam, S., et al: ‘VLSI Architecture for a reconfigurable spectrally efficient FDM baseband transmitter’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2012, 59, (5), pp. 11071118.
    12. 12)
      • 12. Kanaras, I., Chorti, A., Rodrigues, M.R.D., et al: ‘Spectrally efficient FDM signals: bandwidth gain at the expense of receiver complexity’. Proc. IEEE Int. Conf. Communications (ICC) Dersen, June 2009, pp. 16.
    13. 13)
      • 13. Xu, T., Darwazeh, I.: ‘Transmission experiment of bandwidth compressed carrier aggregation in a realistic fading channel’, IEEE Trans. Veh. Technol., 2016, 77, (5), pp. 40874097.
    14. 14)
      • 14. Xu, T., Mikroulis, S., Mitchell, J.E., et al: ‘Bandwidth compressed waveform for 60-GHz millimeter-wave radio over fiber experiment’, J. Lightw. Technol., 2016, 34, (14), pp. 34583465.
    15. 15)
      • 15. Nopchinda, D., Xu, T., Maher, R., et al: ‘Dual polarization coherent optical spectrally efficient frequency division multiplexing’, IEEE Photon. Technol. Lett., 2016, 28, (1), pp. 8386.
    16. 16)
      • 16. Isam, S., Darwazeh, I.: ‘Peak to average power ratio reduction in spectrally efficient FDM systems’. 2011 18th Int. Conf. Telecommunications, Cyprus, May 2011, pp. 363368.
    17. 17)
      • 17. Digital Video Broadcasting (DVB): ‘Second generation framing structure’. Channel Coding and Modulation Systems for Broadcasting, Interactive Services, News Gathering and Other Broadband Satellite Applications (DVB-S2), Technical report, European Standard (Telecommunications series), August 2009.
    18. 18)
      • 18. Berrou, C., Glavieux, A., Thitimajshima, P.: ‘Near Shannon limit error-correcting coding and decoding: turbo-codes. 1’. IEEE Int. Conf. Communications, 1993 (ICC '93), Geneva, vol. 2, May 1993, pp. 10641070.
    19. 19)
      • 19. Douillard, C., Jézéquel, M., Berrou, C., et al: ‘Iterative correction of intersymbol interference: turbo-equalization’, Eur. Trans. Telecommun., 1995, 6, (5), pp. 507511.
    20. 20)
      • 20. Tuchler, M., Koetter, R., Singer, A.C.: ‘Turbo equalization: principles and new results’, IEEE Trans. Commun., 2002, 50, (5), pp. 754767.
    21. 21)
      • 21. Wang, X., Poor, H.V.: ‘Iterative (turbo) soft interference cancellation and decoding for coded CDMA’, IEEE Trans. Commun., 1999, 47, (7), pp. 10461061.
    22. 22)
      • 22. Molisch, A.F., Toeltsch, M., Vermani, S.: ‘Iterative methods for cancellation of intercarrier interference in OFDM systems’, IEEE Trans. Veh. Technol., 2007, 56, (4), pp. 21582167.
    23. 23)
      • 23. Xu, T., Darwazeh, I.: ‘Nyquist-SEFDM: pulse shaped multicarrier communication with sub-carrier spacing below the symbol rate’. Proc. 10th Int. Symp. Communication Systems Networks and Digital Signal Processing (CSNDSP), Prague, July 2016, pp. 16.
    24. 24)
      • 24. Xu, T., Darwazeh, I.: ‘Bandwidth compressed carrier aggregation’. 2015 IEEE Int. Conf. Communication Workshop (ICCW), London, June 2015, pp. 11071112.
    25. 25)
      • 25. Morello, A., Mignone, V.: ‘DVB-S2: the second generation standard for satellite broad-band services’, Proc. IEEE, 2006, 94, (1), pp. 210227.
    26. 26)
      • 26. Isam, S., Darwazeh, I.: ‘Characterizing the intercarrier interference of non-orthogonal spectrally efficient FDM system’. 2012 8th Int. Symp. Communication Systems, Networks & Digital Signal Processing (CSNDSP), Poznan, July 2012, pp. 15.
    27. 27)
      • 27. Beidas, B.F., Seshadri, R.I., Becker, N.: ‘Multicarrier successive predistortion for nonlinear satellite systems’, IEEE Trans. Commun., 2015, 63, (4), pp. 13731382.
    28. 28)
      • 28. Beidas, B.F., Gamal, H.E., Kay, S.: ‘Iterative interference cancellation for high spectral efficiency satellite communications’, IEEE Trans. Commun., 2002, 50, (1), pp. 3136.

Related content

This is a required field
Please enter a valid email address