Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Modelling and performance analysis of mmWaves and radio-frequency based 3D heterogeneous networks

This study introduces a three-dimensional (3D) model for K-tier heterogeneous networks (HetNets) in order to evaluate the performance of using millimetre wave (mmWave) and radio-frequency (RF) bands. The model is based on 3D stochastic geometry that describes the different cells' positions in the network with realistic constraints. Based on the 3D model, the successful transmission probability, the average throughput, and the average bit error rate expressions of down-link HetNets are detailed and derived for both considering bands. Using numerical results, the analytical derived expressions are evaluated, and the advantages of using mmWave and RF bands for HetNets are investigated.

References

    1. 1)
      • 2. Chen, Y., Elkashlan, M., Wong, K.K., et al: ‘User Association in 5 g networks: a survey and an outlook’, IEEE Commun. Surv. Tutor., 2016, 18, (2), pp. 10181044.
    2. 2)
      • 5. Sulyman, A.I., Nassar, A.T., Samimi, M.K., et al: ‘Radio propagation path loss models for 5g cellular networks in the 28 GHz and 38 GHz millimeter-wave bands’, IEEE Commun. Mag., 2014, 19, (9), pp. 7886.
    3. 3)
      • 4. Andrews, J., Chandrasekhar, V., Gatherer, A.: ‘Femtocell networks: a survey’, IEEE Commun. Mag., 2008, 46, (9), pp. 5967.
    4. 4)
      • 17. Cho, B., Koufos, K., Jantti, R.: ‘Bounding the mean interference in matern type II hard-core wireless networks’, IEEE Wirel. Commun. Lett., 2013, 2, (5), pp. 563566.
    5. 5)
      • 3. De la Roche, G., Kountouris, M., Quek, T., et al: ‘Enhanced intercell interference coordination challenges in heterogeneous networks’, IEEE Wirel. Commun., 2011, 18, (3), pp. 2230.
    6. 6)
      • 23. Abramowitz, M., Stegun, I.A.: ‘Handbook of mathematical functions with formulas, graphs, and mathematical tables’ vol. 10, (U.S. Dept. Commerce, USA, 1972).
    7. 7)
      • 1. Feng, D., Lu, L., Yuan-Wu, Y., et al: ‘Device-to-device communications in cellular networks’, IEEE Commun. Mag., 2014, 52, pp. 4955.
    8. 8)
      • 15. Omri, A., Hasna, M.O.: ‘Modelling and performance analysis of 3-D heterogeneous cellular networks’. IEEE Int. Conf. Communication (ICC), 2016.
    9. 9)
      • 19. Chiu, S.N., Stoyan, D., Kendall, W.S., et al: ‘Stochastic Geometry and its Applications’ (John Wiley & Sons, Ltd, Chichester, 2013).
    10. 10)
      • 12. Dhillon, H., Novlan, T., Andrews, J.: ‘Coverage probability of uplink cellular networks’. IEEE Global Commun. Conf. (GlobeCom), 2012.
    11. 11)
      • 22. Hamdi, K.A.: ‘Capacity of MRC on correlated rician fading channels’, IEEE Trans. Commun., 2008, 56, (5), pp. 708711.
    12. 12)
      • 13. Cao, D., Zhou, S., Niu, Z.: ‘Optimal combination of base station densities for energy-efficient two-tier heterogeneous cellular networks’, IEEE Trans. Wirel. Commun., 2013, 12, (9), pp. 43504362.
    13. 13)
      • 20. Devasirvatham, D.M.J., Banerjee, C., Murray, R.R., et al: ‘Four-frequency radio wave propagation measurements of the indoor environment in a large metropolitian commercial building’ (GlobeCom, Phoenix, AZ, USA, 1991).
    14. 14)
      • 6. Rappaport, T.S., Sun, S., Mayzus, R., et al: ‘Millimeter wave mobile communications for 5 g cellular: it will work!’, IEEE Access., 2013, 1, pp. 335349.
    15. 15)
      • 11. Andrews, J.G., Baccelli, F., Ganti, R.K.: ‘A tractable approach to coverage and rate in cellular networks’, IEEE Trans. Commun., 2011, 59, (11), pp. 31223134.
    16. 16)
      • 9. Shamai, S., Wyner, A.D.: ‘Information-theoretic considerations for symmetric, cellular, multiple-access fading channels–part I’, IEEE Trans. Inf. Theory, 1997, 43, (6), pp. 18771894.
    17. 17)
      • 16. Bachtobji, S., Omri, A., Bouallegue, R.: ‘Modelling and performance analysis of 3-d mmwaves based heterogeneous networks’. Int. Wireless Communications and Mobile Computing Conf. (IWCMC), 2016, pp. 7276.
    18. 18)
      • 14. Pan, Z., Zhu, Q.: ‘Modeling and analysis of coverage in 3-D cellular networks’, IEEE Commun. Lett., 2015, 19, (5), pp. 831834.
    19. 19)
      • 8. Abu-Surra, S., Pi, Z., El Ayach, O., et al: ‘Spatially sparse precoding in millimeter wave mimo systems’, IEEE Trans. Wirel. Commun., 2014, 13, (3), pp. 14991513.
    20. 20)
      • 21. Devasirvatham, D.M.J., Banerjee, C., Krain, M.J., et al‘Four-frequency radio wave propagation measurements in the portable radio environment’, 1991.
    21. 21)
      • 18. Haenggi, M.: ‘Stochastic geometry for wireless networks’ (Cambridge University Press, New York, USA, 2012).
    22. 22)
      • 7. Pi, Z., Khan, F.: ‘An introduction to millimeter wave mobile broadband systems’, IEEE Commun. Mag., 2011, 49, (6), pp. 101107.
    23. 23)
      • 10. Shamai, S., Wyner, A.D.: ‘Information-theoretic considerations for symmetric, cellular, multiple-access fading channels–part II’, IEEE Trans. Inf. Theory, 1997, 43, (6), pp. 18951911.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.0777
Loading

Related content

content/journals/10.1049/iet-com.2017.0777
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address