Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Reception and detection of a wide-band OFDM signal in a Doppler spreading channel

This study focuses on the reception strategy and the detection method of a wideband orthogonal frequency-division multiplexing (OFDM) signal, which is passing through a Doppler channel. Most prior works regarded the Doppler effect as a reason of interchannel interference due to its destruction of the subcarrier orthogonality. Distinguishing from those works, the authors point out that the wideband OFDM signal is still an OFDM signal with subcarrier orthogonality after passing the channel with single Doppler scaling factor. Thus, the received OFDM signal passing the Doppler spreading channel is a linear superposition of a set of transmitted OFDM signals associated with different parameters. To make full use of the diversity gain offered by the superposition, the authors propose a strategy of diversity reception and a belief propagation detection method for the received wideband OFDM signal. The simulation results show that the proposed strategy improves the performance obviously with increase of the diversity order in a Doppler spreading channel. It offers different options for system demands. Furthermore, the proposed detection method can offer an acceptable performance even it combined with the conventional sampling process. It makes the conventional structure replacing the common resampling structure possible in a wideband OFDM system.

References

    1. 1)
      • 22. Beygi, S., Mitra, U.: ‘Optimal Bayesian resampling for OFDM signaling over multi-scale multi-lag channels’, IEEE Signal Process. Lett., 2013, 20, (11), pp. 11181121.
    2. 2)
      • 21. Yerramalli, S., Mitra, U.: ‘Optimal resampling of OFDM signals for multiscale-multilag underwater acoustic channels’, IEEE J. Ocean. Eng., 2011, 36, (1), pp. 126138.
    3. 3)
      • 18. Stojanovic, M.: ‘Low complexity OFDM detector for underwater acoustic channels’. Oceans, Boston, MA, USA, 2006, pp. 16.
    4. 4)
      • 8. Linnartz, J.-P.M.G.: ‘Performance analysis of synchronous MC-CDMA in mobile Rayleigh channel with both delay and Doppler spreads’, IEEE Trans. Veh. Technol., 2001, 50, (6), pp. 13751387.
    5. 5)
      • 13. Suryani, T., Hendrantoro, G.: ‘ICI mitigation with CFO compensation for OFDM in mobile-to-mobile channel’. ICT Convergence, Seoul, South Korea, 2001, pp. 430435.
    6. 6)
      • 20. Li, B., Zhou, S., Stojanovic, M., et al: ‘Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts’, IEEE J. Ocean. Eng., 2008, 33, (2), pp. 198209.
    7. 7)
      • 17. Klenner, P., Kammeyer, K.-D.: ‘Performance of space-time-coded OFDM with sectorized antenna reception’. Int. ITG Workshop on Smart Antennas (WSA), Vienna, Austria, 2008, pp. 304310.
    8. 8)
      • 27. Pearl, J.: ‘Probabilistic reasoning in intelligent systems’ (Kaufmann, San Francisco, CA, 1988, 2nd edn.).
    9. 9)
      • 14. Gorokhov, A., Linnartz, J.-P.: ‘Robust OFDM receivers for dispersive time-varying channels: equalization and channel acquisition’, IEEE Trans. Commun., 2004, 52, (4), pp. 572583.
    10. 10)
      • 3. Panayirci, E., Senol, H., Vincent Poor, H.: ‘Joint channel estimation, equalization, and data detection for OFDM systems in the presence of very high mobility’, IEEE Trans. Signal Proc., 2010, 58, (8), pp. 42254238.
    11. 11)
      • 6. Robertson, P.: ‘The effects of Doppler spreads in OFDM(a) mobile radio system’. IEEE Conf. Vehicular Technology, Amsterdam, The Netherlands, 1999, pp. 329333.
    12. 12)
      • 5. Biglieri, E., Proakis, J., Shamai (Shitz), S.: ‘Fading channels: information-theoretic and communications aspects’, IEEE Trans. Inf. Theory, 1998, 44, (6), pp. 26192692.
    13. 13)
      • 28. Kabashima, Y.: ‘A CDMA multiuser detection algorithm on the basis of belief propagation’, J. Phys. A Math. Gen., 2003, 36, pp. 1111111121.
    14. 14)
      • 23. Wang, Z., Zhou, S., Giannakis, G.B., et al: ‘Frequency-domain oversampling for zero-padding OFDM in underwater acoustic communications’, IEEE J. Ocean. Eng., 2012, 37, (1), pp. 1423.
    15. 15)
      • 10. Wu, H.-C., Huang, X.: ‘Joint phase/amplitude estimation and symbol detection for wireless ICI self-concellation coded OFDM systems’, IEEE Trans. Broadcast., 2004, 50, (1), pp. 4955.
    16. 16)
      • 30. Boutros, J., Caire, G.: ‘Iterative multiuser joint decoding: unified framework and asymptotic analysis’, IEEE Trans. Inf. Theory, 2002, 48, (7), pp. 17721793.
    17. 17)
      • 24. Tu, K., Duman, T.M., Stojanovic, M., et al: ‘Multiple resampling receiver design for OFDM over Doppler distorted underwater acoustic channels’, IEEE J. Ocean. Eng., 2013, 38, (3), pp. 333346.
    18. 18)
      • 12. Lin, K.-Y., Lin, H.-P., Tseng, M.-C.: ‘An equivalent channel time variation mitigation scheme for ICI reduction in high-mobility OFDM systems’, IEEE Trans. Broadcast, 2012, 58, (3), pp. 472479.
    19. 19)
      • 26. Daoud, S., Ghrayeb, A.: ‘Using resampling to combat Doppler scaling in UWA channels with single carrier modulation and frequency-domain equalization’, IEEE Trans. Veh. Technol., 2016, 65, (3), pp. 12611270.
    20. 20)
      • 2. Zhang, L., Hong, Z., Thibault, L., et al: ‘A low-complexity robust OFDM receiver for fast fading channels’, IEEE Trans. Broadcast., 2014, 60, (2), pp. 347357.
    21. 21)
      • 19. Salberg, A.B., Swami, A.: ‘Doppler and frequency-offset synchronization in wideband OFDM’, IEEE Trans. Wirel. Commun., 2005, 4, (6), pp. 28702881.
    22. 22)
      • 25. Huang, J., Zhou, S., Wang, Z.: ‘Performance results of two iterative receivers for distributed MIMO OFDM with large Doppler deviations’, IEEE J. Ocean. Eng., 2013, 38, (3), pp. 347357.
    23. 23)
      • 1. Septimus, A., Keller, Y., Bergel, I.: ‘Spectral approach to inter-carrier interference mitigation in OFDM systems’, IEEE Trans. Commun., 2014, 62, (8), pp. 28022811.
    24. 24)
      • 4. Moose, P.H.: ‘A technique for orthogonal frequency division multiplexing frequency offset correction’, IEEE Trans. Commun., 1994, 42, (10), pp. 29082914.
    25. 25)
      • 15. Tomasin, S., Gorokhov, A., Yang, H., et al: ‘Iterative interference cancellation and channel estimation for mobile OFDM’, IEEE Trans. Wirel. Commun., 2005, 4, (1), pp. 238245.
    26. 26)
      • 29. Kschischang, F.R., Frey, B.J., Loeliger, H.-A.: ‘Factor graphs and the Sum-Product algorithm’, IEEE Trans. Inf. Theory, 2001, 47, (2), pp. 498519.
    27. 27)
      • 9. Seyedi, A., Saulnier, G.J.: ‘General self-cancellation scheme for mitigation of ICI in OFDM systems’. IEEE Int. Conf. Communications, Paris, France, 2004, vol. 5, pp. 26532657.
    28. 28)
      • 16. Kewen, L., Ting, H., Ping'an, L., et al: ‘POSTBC-OFDM with sectorized antenna reception over rapidly time-varying channels’. Int. Conf. on Networks Security, Wireless Communications and Trusted Computing, Wuhan, Hubei, China, 2009, pp. 1720.
    29. 29)
      • 7. Hou, S.W., Ko, C.C.: ‘Intercarrier interference suppression for OFDMA uplink in time- and frequency- selective fading channels’, IEEE Trans. Veh. Technol., 2009, 58, (6), pp. 27412754.
    30. 30)
      • 11. Schniter, P.: ‘Low-complexity equalization of OFDM in doubly selective channels’, IEEE Trans. Signal Proc., 2004, 52, (4), pp. 10021011.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.0571
Loading

Related content

content/journals/10.1049/iet-com.2017.0571
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address