access icon free Analysis of security performance of relay selection in underlay cognitive networks

Underlay cognitive networks allow unlicenced/secondary users (SUs) to opportunistically access licenced frequency bands, and hence information transmission is undoubtedly wire-tapped by eavesdroppers. This study analyses security performance of a relay selection scheme, which selects a secondary relay to minimise information wire-tapping of eavesdroppers, in underlay cognitive networks. Toward this end, the authors propose approximate and asymptotic intercept outage probability expressions which account for interference power constraint for licenced/primary users, maximum transmit power constraint for SUs, independent non-identical fading channels, and direct channel between secondary source and eavesdropper. Moreover, they determine diversity order and coding gain of this relay selection based on the proposed asymptotic expression. Monte Carlo simulations validate these expressions and numerous results demonstrate that the investigated relay selection prevents the eavesdropper from obtaining full diversity order offered by all relays and source, induces the intercept outage probability saturated at either large maximum transmit power or large maximum interference power, and improves information security performance with respect to the increase in the number of relays.

Inspec keywords: cognitive radio; relay networks (telecommunication); fading channels; telecommunication security; Monte Carlo methods

Other keywords: eavesdroppers; underlay cognitive networks; relay selection; fading channels; asymptotic intercept outage probability expressions; licenced/primary users; maximum transmit power constraint; information transmission; secondary relay; Monte Carlo simulations; unlicenced/secondary users; information wire-tapping

Subjects: Monte Carlo methods; Radio links and equipment; Monte Carlo methods; Data security

References

    1. 1)
      • 2. Laneman, J.N., Tse, D.N.C., Wornell, G.W.: ‘Cooperative diversity in wireless networks: efficient protocols and outage behavior’, IEEE Trans. Inf. Theory, 2004, 50, (12), pp. 30623080.
    2. 2)
      • 18. Sakran, H., Shokair, M., Nasr, O., et al: ‘Proposed relay selection scheme for physical layer security in cognitive radio networks’, IET Commun., 2012, 6, (16), pp. 26762687.
    3. 3)
      • 6. Liu, Y., Wang, L., Duy, T.T., et al: ‘Relay selection for security enhancement in cognitive relay networks’, IEEE Wirel. Commun. Lett., 2015, 4, (1), pp. 4649.
    4. 4)
      • 31. Ahmed, N., Khojastepour, M.A., Aazhang, B.: ‘Outage minimization and optimal power control for the fading relay channel’. Proc. IEEE Information Theory Workshop, San Antonio, TX, USA, October 2004, pp. 458462.
    5. 5)
      • 9. Wenli, L., Li, G., Tianyu, K., et al: ‘Secure cognitive radio system with cooperative secondary networks’. Proc. IEEE ICT, Sydney, Australia, 27–29 April 2015, pp. 610.
    6. 6)
      • 5. Yulong, Z., Xuelong, L., Ying-Chang, L.: ‘Secrecy outage and diversity analysis of cognitive radio systems’, IEEE J. Sel. Areas Commun., 2014, 32, (11), pp. 22222236.
    7. 7)
      • 30. Haiyang, D., Jianhua, G., da Costa, D.B., et al: ‘Asymptotic analysis of cooperative diversity systems with relay selection in a spectrum-sharing scenario’, IEEE Trans. Veh. Technol., 2011, 60, (2), pp. 457472.
    8. 8)
      • 22. Sibomana, L., Zepernick, H.-J., Tran, H.: ‘On physical layer security for reactive DF cognitive relay networks’. Proc. IEEE GLOBECOM, Austin, TX, USA, December 2014, pp. 12901295.
    9. 9)
      • 1. Tavana, M., Rahmati, A., Shah-Mansouri, V., et al: ‘Cooperative sensing with joint energy and correlation detection in cognitive radio networks’, IEEE Commun. Lett., 2017, 21, (1), pp. 132135.
    10. 10)
      • 13. He, B., Zhou, X.: ‘Secure on-off transmission design with channel estimation errors’, IEEE Trans. Inf. Forensics Sec., 2013, 8, (12), pp. 19231936.
    11. 11)
      • 29. Ho-Van, K.: ‘Exact outage probability analysis of proactive relay selection in cognitive radio networks with MRC receivers’, J. Commun. Netw., 2016, 18, (3), pp. 288298.
    12. 12)
      • 10. Pengwei, Z., Xing, Z., Yan, Z., et al: ‘Physical layer security in cognitive relay networks with multiple antennas’. Proc. IEEE ICC, London, UK, 6–12 June 2015, pp. 73597364.
    13. 13)
      • 26. Gradshteyn, I.S., Ryzhik, I.M.: ‘Table of integrals, series and products’ (Academic, San Diego, CA, 2000, 6th edn.).
    14. 14)
      • 15. Krikidis, I., Thompson, J.S., McLaughlin, S.: ‘Relay selection for secure cooperative networks with jamming’, IEEE Trans. Wirel. Commun., 2009, 8, (10), pp. 50035011.
    15. 15)
      • 12. Zhu, F., Yao, M.: ‘Improving physical layer security for CRNs using SINR-based cooperative beamforming’, IEEE Trans. Veh. Technol., 2016, 65, (3), pp. 18351841.
    16. 16)
      • 25. Vucetic, B., Yuan, J.: ‘Space-time coding’ (John Wiley & Sons, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, 2003).
    17. 17)
      • 19. Pham Ngoc, S., Hyung Yun, K.: ‘The underlay cooperative cognitive network with secure transmission’. Proc. IEEE QBSC, Kingston, ON, Canada, June 2014, pp. 164167.
    18. 18)
      • 28. Abramowitz, M., Stegun, I.A.: ‘Handbook of mathematical functions with formulas, graphs, and mathematical tables’ (Dover Publications, New York, NY, USA, 1972).
    19. 19)
      • 17. Yan, S., Yang, N., Malaney, R., et al: ‘Transmit antenna selection with Alamouti coding and power allocation in MIMO wiretap channels’, IEEE Trans. Wirel. Commun., 2014, 13, (3), pp. 16561667.
    20. 20)
      • 14. Krikidis, I., Ottersten, B.: ‘Secrecy sum-rate for orthogonal random beamforming with opportunistic scheduling’, IEEE Sig. Process. Lett., 2013, 20, (2), pp. 141144.
    21. 21)
      • 8. Hui, Z., Hequn, L., Yaping, L., et al: ‘Physical layer security of maximal ratio combining in underlay cognitive radio unit over Rayleigh fading channels’. Proc. IEEE ICCSN, Chengdu, China, 6–7 June 2015, pp. 201205.
    22. 22)
      • 23. Ho-Van, K.: ‘Effect of mutual interference and channel estimation error on outage performance of reactive relay selection in unlicensed systems’, J. Commun. Netw., 2015, 17, (4), pp. 362369.
    23. 23)
      • 21. Ding, J., Yang, Q., Yang, J.: ‘Secrecy outage probability of minimum relay selection in multiple eavesdroppers DF cognitive radio networks’. Proc. IEEE VTC, Nanjing, China, 15–18 May 2016, pp. 15.
    24. 24)
      • 24. Ho-Van, K.: ‘On the performance of cooperative cognitive networks with proactive relay selection’, Wirel. Netw., 2016, 22, (7), pp. 21312141.
    25. 25)
      • 3. Zhang, Z., Chai, X., Long, K., et al: ‘Full duplex techniques for 5G networks: self-interference cancellation, protocol design, and relay selection’, IEEE Commun. Mag., 2015, 53, (5), pp. 128137.
    26. 26)
      • 7. Xu, X., He, B., Yang, W., et al: ‘Secure transmission design for cognitive radio networks with poisson distributed eavesdroppers’, IEEE Trans. Inf. Forensics Sec., 2016, 11, (2), pp. 373387.
    27. 27)
      • 4. Liu, Y., Chen, H.H., Wang, L.: ‘Physical layer security for next generation wireless networks: theories, technologies, and challenges’, IEEE Commun. Surv. Tutor., 2017, 19, (1), pp. 347376.
    28. 28)
      • 20. Duong, T.Q., Duy, T.T., Elkashlan, M., et al: ‘Secured cooperative cognitive radio networks with relay selection’. Proc. IEEE GLOBECOM, Austin, TX, USA, December 2014, pp. 30743079.
    29. 29)
      • 16. Jong-Ho, L.: ‘Full-duplex relay for enhancing physical layer security in multi-hop relaying systems’, IEEE Commun. Lett., 2015, 19, (4), pp. 525528.
    30. 30)
      • 11. Hu, J., Cai, Y., Yang, N., et al: ‘Artificial-noise-aided secure transmission scheme with limited training and feedback overhead’, IEEE Trans. Wirel. Commun., 2017, 16, (1), pp. 193205.
    31. 31)
      • 27. Torabi, M., Ajib, W., Haccoun, D.: ‘Performance analysis of amplify-and-forward cooperative networks with relay selection over rayleigh fading channels’. Proc. IEEE VTC, Barcelona, Spain, 26–29 April 2009, pp. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.0445
Loading

Related content

content/journals/10.1049/iet-com.2017.0445
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading