Analysis of security performance of relay selection in underlay cognitive networks

Analysis of security performance of relay selection in underlay cognitive networks

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Underlay cognitive networks allow unlicenced/secondary users (SUs) to opportunistically access licenced frequency bands, and hence information transmission is undoubtedly wire-tapped by eavesdroppers. This study analyses security performance of a relay selection scheme, which selects a secondary relay to minimise information wire-tapping of eavesdroppers, in underlay cognitive networks. Toward this end, the authors propose approximate and asymptotic intercept outage probability expressions which account for interference power constraint for licenced/primary users, maximum transmit power constraint for SUs, independent non-identical fading channels, and direct channel between secondary source and eavesdropper. Moreover, they determine diversity order and coding gain of this relay selection based on the proposed asymptotic expression. Monte Carlo simulations validate these expressions and numerous results demonstrate that the investigated relay selection prevents the eavesdropper from obtaining full diversity order offered by all relays and source, induces the intercept outage probability saturated at either large maximum transmit power or large maximum interference power, and improves information security performance with respect to the increase in the number of relays.


    1. 1)
      • 1. Tavana, M., Rahmati, A., Shah-Mansouri, V., et al: ‘Cooperative sensing with joint energy and correlation detection in cognitive radio networks’, IEEE Commun. Lett., 2017, 21, (1), pp. 132135.
    2. 2)
      • 2. Laneman, J.N., Tse, D.N.C., Wornell, G.W.: ‘Cooperative diversity in wireless networks: efficient protocols and outage behavior’, IEEE Trans. Inf. Theory, 2004, 50, (12), pp. 30623080.
    3. 3)
      • 3. Zhang, Z., Chai, X., Long, K., et al: ‘Full duplex techniques for 5G networks: self-interference cancellation, protocol design, and relay selection’, IEEE Commun. Mag., 2015, 53, (5), pp. 128137.
    4. 4)
      • 4. Liu, Y., Chen, H.H., Wang, L.: ‘Physical layer security for next generation wireless networks: theories, technologies, and challenges’, IEEE Commun. Surv. Tutor., 2017, 19, (1), pp. 347376.
    5. 5)
      • 5. Yulong, Z., Xuelong, L., Ying-Chang, L.: ‘Secrecy outage and diversity analysis of cognitive radio systems’, IEEE J. Sel. Areas Commun., 2014, 32, (11), pp. 22222236.
    6. 6)
      • 6. Liu, Y., Wang, L., Duy, T.T., et al: ‘Relay selection for security enhancement in cognitive relay networks’, IEEE Wirel. Commun. Lett., 2015, 4, (1), pp. 4649.
    7. 7)
      • 7. Xu, X., He, B., Yang, W., et al: ‘Secure transmission design for cognitive radio networks with poisson distributed eavesdroppers’, IEEE Trans. Inf. Forensics Sec., 2016, 11, (2), pp. 373387.
    8. 8)
      • 8. Hui, Z., Hequn, L., Yaping, L., et al: ‘Physical layer security of maximal ratio combining in underlay cognitive radio unit over Rayleigh fading channels’. Proc. IEEE ICCSN, Chengdu, China, 6–7 June 2015, pp. 201205.
    9. 9)
      • 9. Wenli, L., Li, G., Tianyu, K., et al: ‘Secure cognitive radio system with cooperative secondary networks’. Proc. IEEE ICT, Sydney, Australia, 27–29 April 2015, pp. 610.
    10. 10)
      • 10. Pengwei, Z., Xing, Z., Yan, Z., et al: ‘Physical layer security in cognitive relay networks with multiple antennas’. Proc. IEEE ICC, London, UK, 6–12 June 2015, pp. 73597364.
    11. 11)
      • 11. Hu, J., Cai, Y., Yang, N., et al: ‘Artificial-noise-aided secure transmission scheme with limited training and feedback overhead’, IEEE Trans. Wirel. Commun., 2017, 16, (1), pp. 193205.
    12. 12)
      • 12. Zhu, F., Yao, M.: ‘Improving physical layer security for CRNs using SINR-based cooperative beamforming’, IEEE Trans. Veh. Technol., 2016, 65, (3), pp. 18351841.
    13. 13)
      • 13. He, B., Zhou, X.: ‘Secure on-off transmission design with channel estimation errors’, IEEE Trans. Inf. Forensics Sec., 2013, 8, (12), pp. 19231936.
    14. 14)
      • 14. Krikidis, I., Ottersten, B.: ‘Secrecy sum-rate for orthogonal random beamforming with opportunistic scheduling’, IEEE Sig. Process. Lett., 2013, 20, (2), pp. 141144.
    15. 15)
      • 15. Krikidis, I., Thompson, J.S., McLaughlin, S.: ‘Relay selection for secure cooperative networks with jamming’, IEEE Trans. Wirel. Commun., 2009, 8, (10), pp. 50035011.
    16. 16)
      • 16. Jong-Ho, L.: ‘Full-duplex relay for enhancing physical layer security in multi-hop relaying systems’, IEEE Commun. Lett., 2015, 19, (4), pp. 525528.
    17. 17)
      • 17. Yan, S., Yang, N., Malaney, R., et al: ‘Transmit antenna selection with Alamouti coding and power allocation in MIMO wiretap channels’, IEEE Trans. Wirel. Commun., 2014, 13, (3), pp. 16561667.
    18. 18)
      • 18. Sakran, H., Shokair, M., Nasr, O., et al: ‘Proposed relay selection scheme for physical layer security in cognitive radio networks’, IET Commun., 2012, 6, (16), pp. 26762687.
    19. 19)
      • 19. Pham Ngoc, S., Hyung Yun, K.: ‘The underlay cooperative cognitive network with secure transmission’. Proc. IEEE QBSC, Kingston, ON, Canada, June 2014, pp. 164167.
    20. 20)
      • 20. Duong, T.Q., Duy, T.T., Elkashlan, M., et al: ‘Secured cooperative cognitive radio networks with relay selection’. Proc. IEEE GLOBECOM, Austin, TX, USA, December 2014, pp. 30743079.
    21. 21)
      • 21. Ding, J., Yang, Q., Yang, J.: ‘Secrecy outage probability of minimum relay selection in multiple eavesdroppers DF cognitive radio networks’. Proc. IEEE VTC, Nanjing, China, 15–18 May 2016, pp. 15.
    22. 22)
      • 22. Sibomana, L., Zepernick, H.-J., Tran, H.: ‘On physical layer security for reactive DF cognitive relay networks’. Proc. IEEE GLOBECOM, Austin, TX, USA, December 2014, pp. 12901295.
    23. 23)
      • 23. Ho-Van, K.: ‘Effect of mutual interference and channel estimation error on outage performance of reactive relay selection in unlicensed systems’, J. Commun. Netw., 2015, 17, (4), pp. 362369.
    24. 24)
      • 24. Ho-Van, K.: ‘On the performance of cooperative cognitive networks with proactive relay selection’, Wirel. Netw., 2016, 22, (7), pp. 21312141.
    25. 25)
      • 25. Vucetic, B., Yuan, J.: ‘Space-time coding’ (John Wiley & Sons, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, 2003).
    26. 26)
      • 26. Gradshteyn, I.S., Ryzhik, I.M.: ‘Table of integrals, series and products’ (Academic, San Diego, CA, 2000, 6th edn.).
    27. 27)
      • 27. Torabi, M., Ajib, W., Haccoun, D.: ‘Performance analysis of amplify-and-forward cooperative networks with relay selection over rayleigh fading channels’. Proc. IEEE VTC, Barcelona, Spain, 26–29 April 2009, pp. 15.
    28. 28)
      • 28. Abramowitz, M., Stegun, I.A.: ‘Handbook of mathematical functions with formulas, graphs, and mathematical tables’ (Dover Publications, New York, NY, USA, 1972).
    29. 29)
      • 29. Ho-Van, K.: ‘Exact outage probability analysis of proactive relay selection in cognitive radio networks with MRC receivers’, J. Commun. Netw., 2016, 18, (3), pp. 288298.
    30. 30)
      • 30. Haiyang, D., Jianhua, G., da Costa, D.B., et al: ‘Asymptotic analysis of cooperative diversity systems with relay selection in a spectrum-sharing scenario’, IEEE Trans. Veh. Technol., 2011, 60, (2), pp. 457472.
    31. 31)
      • 31. Ahmed, N., Khojastepour, M.A., Aazhang, B.: ‘Outage minimization and optimal power control for the fading relay channel’. Proc. IEEE Information Theory Workshop, San Antonio, TX, USA, October 2004, pp. 458462.

Related content

This is a required field
Please enter a valid email address