Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Temporal-spatial distribution nature of traffic and base stations in cellular networks

Recent years have witnessed the unprecedented surge of mobile traffic and base stations (BSs) deployment, which poses severe requirement for future communications systems. Understanding the distribution dynamics of traffic and BSs in time-space domain is of vital importance for better network design and resource management in cellular networks. In this study, a study on the statistical characteristics of cellular traffic series is carried out and -stable distribution is verified to be valid for modelling the traffic series of each BS. On the other hand, inspired by the fact that BSs traffic series are spatially correlated, the authors study the statistical relationship between the correlation coefficient and the distance between BSs. Moreover, -stable model is also suitable to describe the BSs deployment, thus conducing to prove the existence of self-similarity. In addition, both the traffic time series and the BSs spatial distribution are deeply associated with heterogeneity, so they come up with the density-based and distance-based methods to quantify their heterogeneous degree.

References

    1. 1)
      • 14. Haenggi, M., Andrews, J.G., Baccelli, F., et al: ‘Stochastic geometry and random graphs for the analysis and design of wireless networks’, IEEE J. Sel. Area Commun., 2009, 27, (7), pp. 10291046.
    2. 2)
      • 23. Gini-Coefficient, https://en.wikipedia.org/wiki/Gini-coefficient.
    3. 3)
      • 6. Leland, W.E., Taqqu, M.S., Willinger, W., et al: ‘On the self-similar nature of ethernet traffic’, ACM SIGCOMM Comput. Commun. Rev., 1993, 23, (4), pp. 183193.
    4. 4)
      • 16. Lee, C.-H., Shih, C.-Y., Chen, Y.-S.: ‘Stochastic geometry based models for modeling cellular networks in urban areas’, Wirel. Netw., 2013, 19, (6), pp. 10631072.
    5. 5)
      • 10. Shafiq, M.Z., Ji, L., Liu, A.X., et al: ‘Characterizing geospatial dynamics of application usage in a 3G cellular data network’. Proc. IEEE INFOCOM, Orlando, USA, 2012.
    6. 6)
      • 5. Li, R., Zhao, Z., Zhou, X., et al: ‘Intelligent 5G: when cellular networks meet artificial intelligence’, IEEE Wirel. Commun., 2017, accepted and available at http://ieeexplore.ieee.org/abstract/document/7886994/.
    7. 7)
      • 13. Michalopoulou, M., Riihijärvi, J., Mähönen, P.: ‘Towards characterizing primary usage in cellular networks: a traffic-based study’. Proc. IEEE DySPAN, Aachen, Germany, 2011.
    8. 8)
      • 3. Paul, U., Subramanian, A.P., Buddhikot, M.M., et al: ‘Understanding traffic dynamics in cellular data networks’. Proc. IEEE INFOCOM, Shanghai, China, 2011.
    9. 9)
      • 15. Taylor, D.B., Dhillon, H.S., Novlan, T.D., et al: ‘Pairwise interaction processes for modeling cellular network topology’. Proc. IEEE GLOBECOM, Anaheim, CA, 2012.
    10. 10)
      • 17. Zhang, J., Wang, W., Zhang, X., et al: ‘Base stations from current mobile cellular networks: measurement, spatial modeling and analysis’. Proc. IEEE WCNC, Shanghai, China, 2013.
    11. 11)
      • 22. Lawrence, I., Lin, K.: ‘A concordance correlation coefficient to evaluate reproducibility’, Biometrics, 1989, 45, (1), pp. 255268.
    12. 12)
      • 2. Hasan, Z., Boostanimehr, H., Bhargava, V.K.: ‘Green cellular networks: a survey, some research issues and challenges’, IEEE Commun. Surv. Tutor., 2011, 13, (4), pp. 524540.
    13. 13)
      • 4. Zhong, Y., Quek, T.Q., Ge, X.: ‘Heterogeneous cellular networks with spatio-temporal traffic: delay analysis and scheduling’, IEEE J. Sel. Area. Commun., 2017, 35, (6), pp. 13731386.
    14. 14)
      • 8. Karasaridis, A., Hatzinakos, D.: ‘Network heavy traffic modeling using α-stable self-similar processes’, IEEE Trans. Commun., 2001, 49, (7), pp. 12031214.
    15. 15)
      • 21. Kolmogorov-Smirnov test, https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test.
    16. 16)
      • 12. Rathgeber, R.: ‘Spatial traffic distribution in cellular networks’. Proc. IEEE VTC, Ottawa, Ont, 1998.
    17. 17)
      • 19. Samorodnitsky, G.: ‘Stable non-Gaussian random processes: stochastic models with infinite variance’ (Chapman and Hall/CRC, New York, 1994), http://www.amazon.com/Stable-Non-Gaussian-Random-Processes-St ochastic/dp/0412051710.
    18. 18)
      • 20. Ge, X., Zhu, G., Zhu, Y.: ‘On the testing for α-stable distributions of network traffic’, Comput. Commun., 2004, 27, (5), pp. 447457.
    19. 19)
      • 9. Cappe, O., Moulines, E., Pesquet, J.-C., et al: ‘Long-range dependence and heavy-tail modeling for teletraffic data’, IEEE Signal Process., 2002, 19, (3), pp. 1427.
    20. 20)
      • 1. Cisco. Cisco Visual Networking Index: Global Mobile data Traffic Forecast Update, 2014–2019, 2015, http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html.
    21. 21)
      • 7. Yin, S., Lin, X.: ‘Traffic self-similarity in mobile ad hoc networks’, Proc. IFIP WOCN 2005, Dubai, United Arab Emirates, 2005.
    22. 22)
      • 11. Paul, U., Subramanian, A.P., Buddhikot, M.M., et al: ‘Understanding spatial relationships in resource usage in cellular data networks’. Proc. INFOCOM, Orlando, USA, 2012.
    23. 23)
      • 18. Ge, X., Tu, S., Mao, G., et al: ‘5G ultra-dense cellular networks’, IEEE Wirel. Commun., 2016, 23, (1), pp. 7279.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.0330
Loading

Related content

content/journals/10.1049/iet-com.2017.0330
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address