Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Protocol with self-adaptive GB for BANs

Body area networks (BANs) are systems of wearable computing devices for long-term monitoring of personal health care. BAN is an emerging technology for the worldwide ageing population. In the BAN system, the transceiver is the most energy-consuming part of a sensor node and radio transmission in the vicinity of the human body is highly lossy and inefficient. Therefore, the energy of the sensor node constraints the life cycle and quality of service of the network; consequently, low-cost protocol shaves attracted wide interest. This study proposes a frame structure model of a self-adaptive guard band protocol, which introduces a GB in each time slot according to the allowed maximum time drift of the crystal, adaptively adjusts the value of the GB based on the actual time drift, and then ensures that the node simultaneously maintains the sleeping state and synchronisation with the coordinator during beacon transmission, thus reducing the energy consumption.

References

    1. 1)
      • 7. Pande, H., Kharat, M.U.: ‘Adaptive energy efficient MAC protocol for increasing life of sensor nodes in wireless body area network’. Int. Conf. Internet of Things and Applications, 2016.
    2. 2)
      • 18. Wong, P.K., Yin, D., Lee, T.T.: ‘Analysis of non-persistent CSMA protocols with exponential backoff scheduling’, IEEE Trans. Commun., 2010, 59, (8), pp. 22062214.
    3. 3)
      • 10. Gopalan, S.A., Kim, D.H., Nah, J.W., et al: ‘A survey on power-efficient MAC protocols for wireless body area networks’. 2010 Third IEEE Int. Conf. Broadband Network and Multimedia Technology (IC-BNMT), 2010, pp. 12301234.
    4. 4)
      • 5. Patel, M., Wang, J.: ‘Applications, challenges, and prospective in emerging body area networking technologies’, IEEE Wirel. Commun., 2010, 17, (1), pp. 8088.
    5. 5)
      • 3. Chen, M., Gonzalez, S., Vasilakos, A., et al: ‘Body area networks: a survey’, Mobile Netw. Appl., 2011, 16, (2), pp. 171193.
    6. 6)
      • 20. Timmons, N.F., Scanlon, W.G.: ‘An adaptive energy efficient MAC protocol for the medical body area network’. Int. Conf. Wireless Communication Vehicular Technology Information Theory and Aerospace & Electronic Systems Technology 2009 Wireless Vitae, 2009, pp. 587593.
    7. 7)
      • 15. Rajendran, V., Obraczka, K., Garcia-Luna-Aceves, J.J.: ‘Energy-efficient, collision-free medium access control for wireless sensor networks’, Wirel. Netw., 2006, 12, (1), pp. 6378.
    8. 8)
      • 6. Lin, C.S., Chuang, P.J.: ‘Energy-efficient transmission in wireless body area networks’. Int. Symp. Intelligent Signal Processing and Communications Systems, 2012, pp. 663668.
    9. 9)
      • 1. Pantelopoulos, A., Bourbakis, N.G.: ‘A survey on wearable sensor-based systems for health monitoring and prognosis’, IEEE Trans. Syst. Man Cybern. C, Appl. Rev., 2010, 40, (1), pp. 112.
    10. 10)
      • 21. Perahia, E., Stacey, R.: ‘Next generation wireless LANs: throughput, robustness, and reliability in 802.11n’, 2008.
    11. 11)
      • 22. Gallo, M., Hall, P.S., Nechayev, Y.I., et al: ‘Use of animation software in simulation of on-body communications channels at 2.45 GHz’, IEEE Antennas Wirel. Propag. Lett., 2008, 7, pp. 321324.
    12. 12)
      • 8. Jaramillo, R., Quintero, A., Chamberland, S.: ‘Energy-efficient MAC protocol for wireless body area networks’. Int. Conf. Workshop on Computing and Communication, 2015, pp. 15.
    13. 13)
      • 4. Yuce, M.R.: ‘Implementation of wireless body area networks for healthcare systems’, Sens. Actuators A, Phys., 2010, 162, (1), pp. 116129.
    14. 14)
      • 13. Polastre, J., Hill, J., Culler, D.: ‘Versatile low power media access for wireless sensor networks’. Int. Conf. Embedded Networked Sensor Systems, 2004, pp. 95107.
    15. 15)
      • 11. Marinković, S.J., Popovici, E.M., Spagnol, C., et al: ‘Energy-efficient low duty cycle MAC protocol for wireless body area networks’, IEEE Trans. Inf. Technol. Biomed., 2009, 13, (6), pp. 915925.
    16. 16)
      • 23. Uusitupa, T., Aoyagi, T.: ‘Analysis of dynamic on-body communication channels for various movements and polarization schemes at 2.45 GHz’, IEEE Trans. Antennas Propag., 2013, 61, (12), pp. 61686179.
    17. 17)
      • 14. Lu, G., Krishnamachari, B., Raghavendra, C.S.: ‘An adaptive energy-efficient and low-latency MAC for data gathering in wireless sensor networks’, Wirel. Commun. Mob. Comput., 2007, 7, (7), pp. 863875.
    18. 18)
      • 16. Roberts, L.G.: ‘ALOHA packet system with and without slots and capture’, ACM SIGCOMM Comput. Commun. Rev., 1975, 5, (2), pp. 2842.
    19. 19)
      • 17. Yun, S.Y., Yi, Y., Shin, J., et al: ‘Optimal CSMA: a survey’. IEEE Int. Conf. Communication Systems, 2012, pp. 199204.
    20. 20)
      • 9. Ye, W., Heidemann, J., Estrin, D.: ‘Medium access control with coordinated adaptive sleeping for wireless sensor networks’, IEEE/ACM Trans. Netw., 2004, 12, (3), pp. 493506.
    21. 21)
      • 2. Cao, H., Leung, V., Chow, C., et al: ‘Enabling technologies for wireless body area networks: a survey and outlook’, IEEE Commun. Mag., 2010, 47, (12), pp. 8493.
    22. 22)
      • 12. Elhoiydi, A., Decotignie, J.D.: ‘WiseMAC: an ultralow power MAC protocol for the downlink of infrastructure wireless sensor networks’. . Proc. ISCC Int. Symp. Computers and Communications 2004, 2004, pp. 244251.
    23. 23)
      • 19. Fang, G., Dutkiewicz, E.: ‘BodyMAC: energy efficient TDMA-based MAC protocol for wireless body area networks’. Int. Symp. Communications and Information Technology, 2009, pp. 14551459.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.0306
Loading

Related content

content/journals/10.1049/iet-com.2017.0306
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address