Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Joint hybrid precoder and combiner design for multi-stream transmission in mmWave MIMO systems

Millimeter wave (mmWave) communications have been considered as a key technology for future 5G wireless networks since it can provide orders-of-magnitude wider bandwidth than current cellular bands. To overcome the severe propagation loss of the mmWave channel, an economic and energy-efficient analogue/digital hybrid precoding and combining transceiver architecture is widely used in mmWave massive multiple-input multiple-output (MIMO) systems. The digital precoding/combining layer offers more freedom than pure analogue one and enables multi-stream transmission. In this study, the authors consider the problem of codebook-based joint hybrid precoder and combiner design for multi-stream transmission in mmWave MIMO systems. The authors propose to jointly select an analogue precoder and combiner pair for each data stream successively, which can maximise the channel gain as well as suppress the interference between different data streams. Then, the digital precoder and combiner are computed based on the obtained effective baseband channel to further mitigate the interference and maximise the sum-rate. Both fully-connected and partially-connected hybrid beamforming structures are investigated. Simulation results demonstrate that the proposed algorithms exhibit prominent advantages in combating interference between different data streams and offer satisfactory performance improvements compared with the existing codebook-based hybrid beamforming schemes.

References

    1. 1)
      • 12. Payami, S., Ghoraishi, M., Dianati, M.: ‘Hybrid beamforming for large antenna arrays with phase shifter selection’, IEEE Trans. Wirel. Commun., 2016, 15, (11), pp. 72587271.
    2. 2)
      • 7. López-Valcarce, R., González-Prelcic, N., Rusu, C., et al: ‘Hybrid precoders and combiners for mmWave MIMO systems with per-antenna power constraints’. IEEE Global Communication Conf.(GLOBECOM), Washington, DC, December 2016, pp. 16.
    3. 3)
      • 3. Heath, R.W., González-Prelcic, N., Rangan, S., et al: ‘An overview of signal processing techniques for millimeter wave MIMO systems’, IEEE J. Sel. Top. Signal Process., 2016, 10, (3), pp. 436453.
    4. 4)
      • 16. Chen, C.-E.: ‘An iterative hybrid transceiver design algorithm for millimeter wave MIMO systems’, IEEE Wirel. Commun. Lett., 2015, 4, (3), pp. 285288.
    5. 5)
      • 6. Rusu, C., Méndez-Rial, R., González-Prelcic, N., et al: ‘Low complexity hybrid precoding strategies for millimeter wave communication systems’, IEEE Trans. Wirel. Commun., 2016, 15, (12), pp. 83808393.
    6. 6)
      • 9. Dai, L., Gao, X., Quan, J., , et al: ‘Near-optimal hybrid analogue and digital precoding for downlink mmWave massive MIMO systems’. Proc. IEEE Int. Conf. Commun. (ICC), London, UK, June 2015, pp. 13341339.
    7. 7)
      • 20. Gao, X., Dai, L., Yuen, C., , et al: ‘Turbo-like beamforming based on tabu search algorithm for millimeter-wave massive MIMO systems’, IEEE Trans. Veh. Technol., 2016, 65, (7), pp. 57315737.
    8. 8)
      • 10. He, S., Qi, C., Wu, Y., , et al: ‘Energy-efficient transceiver design for hybrid sub-array architecture MIMO systems’, IEEE Access, 2016, 4, pp. 98959905.
    9. 9)
      • 13. Chen, J.-C.: ‘Hyrbrid beamforming with discrete phase shifters for millimeter-wave massive MIMO systems’, IEEE Trans. Veh. Technol., 2017, 66, (8), pp. 76047608.
    10. 10)
      • 17. Alkhateeb, A., Leus, G., Heath, R.W.: ‘Limited feedback hybrid precoding for multi-user millimeter wave systems’, IEEE Trans. Wirel. Commun., 2015, 14, (11), pp. 64816494.
    11. 11)
      • 19. Chen, J.-C.: ‘Efficient codebook-based beamforming algorithm for millimeter-wave massive MIMO systems’, IEEE Trans. Veh. Technol., 2017, 66, (9), pp. 78097817.
    12. 12)
      • 4. Rappapport, T.S., MacCartney, G.R., Samimi, M.K., et al: ‘Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design’, IEEE Trans. Commun., 2015, 63, (9), pp. 30293056.
    13. 13)
      • 15. Alkhateeb, A., Ayach, O.E., Leus, G., , et al: ‘Channel estimation and hybrid precoding for millimeter wave cellular systems’, IEEE J. Sel. Top. Signal Process., 2014, 8, (5), pp. 831846.
    14. 14)
      • 1. Pi, Z., Khan, F.: ‘An introduction to millimeter-wave mobile broadband systems’, IEEE Commun. Mag., 2011, 49, (6), pp. 101107.
    15. 15)
      • 11. Sohrabi, F., Yu, W.: ‘Hybrid digital and analogue beamforming design for large-scale antenna arrays’, IEEE J. Sel. Top. Signal Process., 2016, 10, (3), pp. 501513.
    16. 16)
      • 2. Rappaport, T., Sun, S., Mayzus, R., et al: ‘Millimeter wave mobile communications for 5G cellular: it will work!’, IEEE Access, 2013, 1, pp. 335349.
    17. 17)
      • 14. Ayach, O.E., Rajagopal, S., Abu-Surra, S., , et al: ‘Spatially sparse precoding in millimeter wave MIMO systems’, IEEE Trans. Wirel. Commun., 2014, 13, (3), pp. 14991513.
    18. 18)
      • 8. Gao, X., Dai, L., Han, S.: ‘Energy-efficient hybrid analogue and digital precoding for mmWave MIMO systems with large antenna arrays’, IEEE J. Sel. Areas Commun., 2016, 34, (4), pp. 9981009.
    19. 19)
      • 5. Yu, X., Shen, J.-C., Zhang, J., et al: ‘Alternating minimisation algorithms for hybrid precoding in millimeter wave MIMO systems’, IEEE J. Sel. Top. Signal Process., 2016, 10, (3), pp. 485500.
    20. 20)
      • 18. Kim, M., Lee, Y.: ‘MSE-based hybrid RF/baseband processing for millimeter wave communication systems in MIMO interference channels’, IEEE Trans. Veh. Technol., 2015, 64, (6), pp. 27142720.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.0263
Loading

Related content

content/journals/10.1049/iet-com.2017.0263
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address