http://iet.metastore.ingenta.com
1887

Graphene-based multimode inspired frequency reconfigurable user terminal antenna for satellite communication

Graphene-based multimode inspired frequency reconfigurable user terminal antenna for satellite communication

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a graphene conductive ink printed textile-based microstrip antenna capable of switching between S-band (3.03 GHz, mode) and C-band (5.17 GHz, mode and 6.13 GHz, mode). The graphene conductive ink printed textile shows surface resistance of , conductivity of and excellent microstructural characteristics, which makes it suitable to be used as a metal sheet to fabricate the antenna structure. To overcome the low-conductivity issue of graphene conductive ink, a multilayered substrate approach is utilised to improve radiation performances of the antenna. A peak realised gain of 2.09 dBi and radiation efficiency of 74% is achieved at the dominant mode (3.03 GHz). The frequency reconfigurability is introduced by exciting the higher order modes, and through two different feeding locations. The excitation of ports is controlled through a radio frequency (RF) pin diode switch integrated microstrip transmission line. Subsequently, the proposed structure is further designed using copper foil of thickness () and a comparative analysis of graphene-based and copper-based antennas is presented. The proposed antenna performs substantially well in terms of peak realised gain and radiation efficiency compared with that of the existing graphene-based antenna and the performance deviation with respect to the copper based antenna is lowered significantly.

References

    1. 1)
      • 1. Lee, S.W., Sung, Y.: ‘Compact frequency reconfigurable antenna for LTE/WWAN mobile handset applications’, IEEE Trans. Antennas Propag., 2015, 63, (10), pp. 45724577.
    2. 2)
      • 2. Ban, Y.L., Sun, S.C., Li, P.P., et al.: ‘Compact eight-band frequency reconfigurable antenna for LTE/WWAN tablet computer applications’, IEEE Trans. Antennas Propag., 2014, 62, (1), pp. 471475.
    3. 3)
      • 3. Byeonggwi, M., Changwon, J., Myun-Joo, P., et al.: ‘A compact frequency-reconfigurable multiband LTE MIMO antenna for laptop applications’, IEEE Antennas Propag. Lett., 2014, 13, pp. 13891392.
    4. 4)
      • 4. Jin, Z.J., Lim, J.H., Yun, T.Y.: ‘Frequency reconfigurable multiple-input multipleoutput antenna with high isolation’, IET Microw. Antennas Propag., 2012, 6, (10), pp. 10951101.
    5. 5)
      • 5. Rajagopalan, H., Kovitz, J.M., Samii, Y.R.: ‘MEMS reconfigurable optimized E-shaped patch antenna design for cognitive radio’, IEEE Trans. Antennas Propag., 2014, 62, (3), pp. 10561064.
    6. 6)
      • 6. Cheng, H., Wenbo, P., Xiaoliang, Ma., et al.: ‘A frequency reconfigurable directive antenna with wideband low-RCS property’, IEEE Trans. Antennas Propag., 2016, 64, (3), pp. 11731178.
    7. 7)
      • 7. Yong, C., Jay, G.Y., Bird, T.S.: ‘A frequency reconfigurable printed yagi-uda dipole antenna for cognitive radio applications’, IEEE Trans. Antennas Propag., 2012, 60, (6), pp. 29052912.
    8. 8)
      • 8. Tawk, Y., Costantine, J., Christodoulou, C.G.: ‘A varactor-based reconfigurable filtenna’, IEEE Antennas Propag. Lett., 2012, 11, pp. 716719.
    9. 9)
      • 9. Mansoul, A., Ghanem, F., Mohamad, R., et al.: ‘A selective frequency-reconfigurable antenna for cognitive radio applications’, IEEE Antennas Wirel. Propag. Lett., 2014, 13, pp. 515518.
    10. 10)
      • 10. Jayendra, K., Talukdar, F., Banani, B.: ‘Frequency reconfigurable E-shaped patch antenna for medical applications’, Microw. Opt. technol. Lett., 2016, 58, (9), pp. 22142217.
    11. 11)
      • 11. Gang, C., Xiao-lin, Y., Yan, W.: ‘Dual-band frequency-reconfigurable folded slot antenna for wireless communications’, IEEE Antennas Wirel. Propag. Lett., 2012, 11, pp. 13861389.
    12. 12)
      • 12. Abubakar, T., Hooshang, G.S.: ‘Frequency-reconfigurable monopole antennas’, IEEE Trans. Antennas Propag., 2012, 60, (1), pp. 4449.
    13. 13)
      • 13. Mohammad, M.F., Pejman, R.A., Orouji, A., et al: ‘A wideband and reconfigurable filtering slot antenna’, IEEE Antennas Propag. Lett., 2016, 15, pp. 16101613.
    14. 14)
      • 14. Qasim, U.K., Mojeeb, B.I., Dilaawaiz, F., et al: ‘Higher order modes: a solution for high gain, wide band patch antennas for different vehicular applications’, IEEE Trans. Veh. Technol., 2016, 66, (5), pp. 35483554.
    15. 15)
      • 15. Anastasios, P., Duarte, D.S.F., Rob, D.S., et al.: ‘: ‘Higher-mode textile patch antenna with embroidered vias for on-body communication’, IET Microw. Antennas Propag., 2015, 10, (7), pp. 802807.
    16. 16)
      • 16. Jinpil, T., Seoungkyu, L., Jaehoon, C.: ‘All-textile higher order mode circular patch antenna for on-body to on-body communications’, IET Microw. Antennas Propag., 2015, 9, (6), pp. 576584.
    17. 17)
      • 17. Dian, W., Kung, B.N., Chi, H.C., et al.: ‘A novel wideband differentially-fed higher-order mode millimeter-wave patch antenna’, IEEE Trans. Antennas Propag., 2015, 63, (2), pp. 466473.
    18. 18)
      • 18. Blayo, A., Pineaux, B.: ‘Printing processes, and their potential for RFID printing’. Proc. SOC-EUSAI, 2005, pp. 2730.
    19. 19)
      • 19. Li, Y., Lu, D., Wong, C.: ‘Electrical conductive adhesives with nanotechnologies’ (Springer, New York, NY, USA, 2009).
    20. 20)
      • 20. Chen, J., Jang, C., Xiao, S., et al: ‘Intrinsic and extrinsic performance limits of graphene devices on SiO2’, Nature Nanotechnol., 2008, 3, (3), pp. 206209.
    21. 21)
      • 21. Hanson, G.W.: ‘Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene’, J. Appl. Phys., 2008, 103, (6), p. 064302.
    22. 22)
      • 22. Mitra, A., Waqas, M., Khan, A., et al.: ‘Fabrication and characterization of graphene antenna for low-cost and environmentally friendly RFID tags’, IEEE Antennas Propag. Lett., 2016, 15, pp. 15691572.
    23. 23)
      • 23. Ting, L., Xianjun, H., Kuo, H., et al.: ‘Graphene nanoflakes printed flexible meandered-line dipole antenna on paper substrate for low-cost RFID and sensing applications’, IEEE Antennas Propag. Lett., 2016, 15, pp. 15651568.
    24. 24)
      • 24. Akbari, M., Virkki, J., Sydanheimo, L., et al.: ‘Toward graphene-based passive UHF RFID textile tags: a reliability study’, IEEE Trans. Antennas Propag., 2016, 16, (3), pp. 429431.
    25. 25)
      • 25. Pawel, K., Bartlomiej, S., Marzena, O., et al.: ‘Graphene-based dipole antenna for a UHF RFID tag’, IEEE Trans. Antennas Propag., 2016, 64, (7), pp. 28622868.
    26. 26)
      • 26. Inder, B.: ‘Lumped elements for RF and microwave circuit’ (Artech House, Boston, London, 2003).
    27. 27)
      • 27. Balanis, C.A.: ‘Antenna theory analysis and design’ (John Wiley & Sons, 2012, 3rd edn.).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.0253
Loading

Related content

content/journals/10.1049/iet-com.2017.0253
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address