Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free An analytical framework in LEO mobile satellite systems servicing batched Poisson traffic

The authors consider a low earth orbit (LEO) mobile satellite system (MSS) that accepts new and handover calls of multirate service-classes. New calls arrive in the system as batches, following the batched Poisson process. A batch has a generally distributed number of calls. Each call is treated separately from the others and its acceptance is decided according to the availability of the requested number of channels. Handover calls follow also a batched Poisson process. All calls compete for the available channels under the complete sharing policy. By considering the LEO-MSS as a multirate loss system with ‘satellite-fixed’ cells, it can be analysed via a multi-dimensional Markov chain, which yields to a product form solution (PFS) for the steady-state distribution. Based on the PFS, they propose a recursive and yet efficient formula for the determination of the channel occupancy distribution, and consequently, for the calculation of various performance measures including call blocking and handover failure probabilities. The latter are much higher compared to the corresponding probabilities in the case of the classical (and less bursty) Poisson process. Simulation results verify the accuracy of the proposed formulas. Furthermore, they discuss the applicability of the proposed model in software-defined LEO-MSS.

References

    1. 1)
      • 22. Stasiak, M., Glabowski, M., Wisniewski, A., et al: ‘Modeling and dimensioning of mobile networks’ (John Wiley, 2011).
    2. 2)
      • 2. Li, T., Zhou, H., Luo, H., et al: ‘Using SDN and NFV to implement satellite communication networks’. Proc. Int. Conf. Networking and Network Applications, Hokkaido, Japan, July 2016, pp. 131134.
    3. 3)
      • 19. Wolff, R.: ‘Stochastic modelling and the theory of queues’ (Prentice-Hall, 1989).
    4. 4)
      • 11. Chen, L., Guo, Q., Wang, H.: ‘A handover management scheme based on adaptive probabilistic resource reservation for multimedia LEO satellite networks’. Proc. Int. Conf. Information Engineering, BeiDai, China, August 2010, pp. 255259.
    5. 5)
      • 4. Maral, G., Restrepo, J., Del Re, E., et al: ‘Performance analysis for a guaranteed handover service in an LEO constellation with a ‘satellite-fixed cell’ system’, IEEE Trans. Veh. Technol., 1998, 47, (4), pp. 12001214.
    6. 6)
      • 20. Benslama, M., Kiamouche, W., Batatia, H.: ‘Connections management strategies in satellite cellular networks’ (John Wiley, 2015).
    7. 7)
      • 5. Zhou, J., Ye, X., Pan, Y., et al: ‘Dynamic channel reservation scheme based on priorities in LEO satellite systems’, Chin. J. Syst. Eng. Electron., 2015, 26, (1), pp. 19.
    8. 8)
      • 25. 3GPP 32.500 v12.1.0, ‘Self-Organizing Networks (SON); Concepts and requirements (Release 12)’, September 2014.
    9. 9)
      • 1. Sun, Z: ‘Satellite networking - principles and protocols’ (John Wiley, 2014, 2nd edn.).
    10. 10)
      • 23. Ferrs, R., Koumaras, H., Sallent, O., et al: ‘SDN/NFV-enabled satellite communications networks: opportunities, scenarios and challenges’, Phys. Commun., 2016, 18, (2), pp. 95112.
    11. 11)
      • 28. Simscript III, http://www.simscript.com, accessed June 2017.
    12. 12)
      • 18. Arcidiano, A., Finocchiaro, D., Collard, F., et al: ‘From S-band mobile interactive multimedia to fixed satellite interactive multimedia: making satellite interactivity affordable at Ku-band and Ka-band’, Int. J. Satell. Commun. Netw., 2016, 34, (4), pp. 575601.
    13. 13)
      • 10. Karapantazis, S., Pavlidou, F-N.: ‘Dynamic time-based handover management in LEO satellite systems’, Electron. Lett., 2007, 43, (5), pp. 5758.
    14. 14)
      • 9. Papapetrou, E., Pavlidou, F-N.: ‘Analytic study of Doppler-based handover management in LEO satellite systems’, IEEE Trans. Aerosp. Electron. Syst., 2005, 51, (3), pp. 830839.
    15. 15)
      • 16. Paxson, V., Floyd, S.: ‘Wide area traffic: the failure of Poisson modeling’, IEEE/ACM Trans. Netw., 1995, 3, (3), pp. 226244.
    16. 16)
      • 3. Yang, B., Wu, Y., Chu, X., et al: ‘Seamless handover in software-defined satellite networking’, IEEE Commun. Let., 2016, 20, (9), pp. 17681771.
    17. 17)
      • 7. Bouchatem, L., Gaiti, D., Pujolle, G.: ‘TCRA: a Time-based channel reservation scheme for handover requests in LEO satellite systems’, Int. J. Satell. Commun. Netw., 2003, 21, (3), pp. 227240.
    18. 18)
      • 8. Wang, X., Wang, X.: ‘The research of channel reservation strategy in LEO satellite network’. Proc. 11th IEEE Int. Conf. Dependable, Autonomic and Secure Computing, Chengdu, China, December 2013, pp. 590594.
    19. 19)
      • 6. Wang, Z., Mathiopoulos, P.: ‘Analysis and performance evaluation of dynamic channel reservation techniques for LEO mobile satellite systems’. Proc. IEEE VTC Spring, Rhodes, Greece, May 2001, pp. 29852989.
    20. 20)
      • 12. Liao, M., Liu, Y., Hu, H., et al: ‘Analysis of maximum traffic intensity under pre-set quality of service requirements in low earth orbit mobile satellite system for fix channel reservation with queueing handover scheme’, IET Commun., 2015, 9, (13), pp. 15751582.
    21. 21)
      • 14. Wang, Z., Mathiopoulos, P., Schober, R.: ‘Channeling partitioning policies for multi-class traffic in LEO-MSS’, IEEE Trans. Aerosp. Electron. Syst., 2009, 45, (4), pp. 13201334.
    22. 22)
      • 15. Wang, Z., Makrakis, D., Mouftah, H.: ‘Performance analysis of threshold call admission policy for multi-class traffic in low earth orbit mobile satellite systems’. Proc. 2nd Int. Conf. Advances in Satellite and Space Communications, Athens, Greece, June 2010, pp. 5257.
    23. 23)
      • 17. Celandroni, N., Ferro, E., Gotta, A.: ‘RA and DA satellite access schemes: a survey and some research results and challenges’, Int. J. Commun. Syst., 2014, 27, (11), pp. 26702690.
    24. 24)
      • 21. Del Re, E., Fantacci, R., Giambene, G.: ‘Performance analysis of dynamic channel allocation technique for satellite mobile cellular networks’, Int. J. Satell. Commun., 1994, 12, (1), pp. 2532.
    25. 25)
      • 24. EC H2020 VITAL (VIrtualized hybrid satellite-TerrestriAl systems for resilient and fLexible future networks) project, www.ict-vital.eu/, accessed March 2017.
    26. 26)
      • 26. Del Re, E., Fantacci, R., Giambene, G.: ‘An efficient technique for dynamically allocating channels in satellite cellular networks’. Proc. IEEE Globecom, Singapore, November 1995, pp. 16241628.
    27. 27)
      • 27. Wang, Z., Mathiopoulos, P.: ‘On the performance analysis of dynamic channel allocation with FIFO handover queueing in LEO-MSS’, IEEE Trans. Commun., 2005, 53, (9), pp. 14431446.
    28. 28)
      • 13. Wang, Z., Mathiopoulos, P., Schober, R.: ‘Performance analysis and improvement methods for channel resource management strategies of LEO-MSS with multiparty traffic’, IEEE Trans. Veh. Technol., 2008, 57, (6), pp. 38323842.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.0220
Loading

Related content

content/journals/10.1049/iet-com.2017.0220
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address