http://iet.metastore.ingenta.com
1887

Multi-beam pattern synthesis algorithm based on kernel principal component analysis and semi-definite relaxation

Multi-beam pattern synthesis algorithm based on kernel principal component analysis and semi-definite relaxation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a novel multi-beam pattern synthesis algorithm is proposed. The algorithm is divided into three steps. First, the pattern synthesis is performed for each beam without element excitation amplitude constraints, and form a element excitations amplitude matrix (EEAM). Second, the kernel principal component analysis (KPCA) technique is used to acquire a group of common element excitation amplitudes (CEEA). Finally, the semi-definite relaxation technique is employed to obtain the element excitation phase of each beam. The KPCA is a kind of principal component extraction method. Compared with the traditional method, the kernel function and the kernel parameter selection criterion used in the proposed study are designed to ensure that the extracted principal component can hold more than 80% of the information of the EEAM, which means that the acquired CEEA can bestly characterise the EEAM, hence resulting in a better synthesised pattern. In addition, the use of KPCA is a quasi-analytical process, which also speeds up the overall algorithm. Compared to the iterative multi-beam pattern synthesis algorithm, nearly half of the synthesis time is reduced. Through several sets of synthesised examples, and compared with some classical algorithms, this algorithm proves its superiority in the comprehensive effect and calculation time.

References

    1. 1)
      • K.N. Sherman .
        1. Sherman, K.N.: ‘Phased array shaped multi-beam optimization for LEO satellite communications using a genetic algorithm’. Proc. 2000 IEEE Int. Conf. Phased Array Systems and Technology, 2000, 2000, pp. 501504.
        . Proc. 2000 IEEE Int. Conf. Phased Array Systems and Technology, 2000 , 501 - 504
    2. 2)
      • C. Bencivenni , M.V. Ivashina , R. Maaskant .
        2. Bencivenni, C., Ivashina, M.V., Maaskant, R.: ‘Reconfigurable aperiodic array synthesis by Compressive Sensing’. 2016 10th European Conf. Antennas and Propagation (EuCAP), 2016, pp. 13.
        . 2016 10th European Conf. Antennas and Propagation (EuCAP) , 1 - 3
    3. 3)
      • C. Wan , Y. Han , W. Sheng .
        3. Wan, C., Han, Y., Sheng, W., et al: ‘Multibeam pattern synthesis with adaptive finite excitation amplitude levels’, IEEE Comm. Lett., 2016, 20, (3), pp. 482485.
        . IEEE Comm. Lett. , 3 , 482 - 485
    4. 4)
      • X. Li , M. Yin .
        4. Li, X., Yin, M.: ‘Hybrid differential evolution with artificial bee colony and its application for design of a reconfigurable antenna array with discrete phase shifters’, IET Microw. Antennas Propag., 2012, 6, (14), pp. 15731582.
        . IET Microw. Antennas Propag. , 14 , 1573 - 1582
    5. 5)
      • C. Luison , A. Landini , P. Angeletti .
        5. Luison, C., Landini, A., Angeletti, P., et al: ‘Aperiodic arrays for spaceborne SAR applications’, IEEE Trans. Antennas Propag., 2012, 60, (5), pp. 22852294.
        . IEEE Trans. Antennas Propag. , 5 , 2285 - 2294
    6. 6)
      • A.F. Morabito , A. Massa , P. Rocca .
        6. Morabito, A.F., Massa, A., Rocca, P., et al: ‘An effective approach to the synthesis of phase-only reconfigurable linear arrays’, IEEE Trans. Antennas Propag., 2012, 60, (8), pp. 36223631.
        . IEEE Trans. Antennas Propag. , 8 , 3622 - 3631
    7. 7)
      • G. Caille , Y. Cailloce , C. Guiraud .
        7. Caille, G., Cailloce, Y., Guiraud, C., et al: ‘Large multibeam array antennas with reduced number of active chains’. Proc. of the Second European Conf. Antennas and Propagation..
        . Proc. of the Second European Conf. Antennas and Propagation
    8. 8)
      • T. Isernia , A. Massa , A.F. Morabito .
        8. Isernia, T., Massa, A., Morabito, A.F., et al: ‘On the optimal synthesis of phase-only reconfigurable antenna arrays’. Proc. of the 5th European Conf. Antennas and Propagation (EUCAP), 2011, pp. 20742077.
        . Proc. of the 5th European Conf. Antennas and Propagation (EUCAP) , 2074 - 2077
    9. 9)
      • W.T. Li , Y.Q. Hei , J. Yang .
        9. Li, W.T., Hei, Y.Q., Yang, J., et al: ‘Synthesis of multiple-pattern planar arrays with a hybrid generalised iterative fast Fourier transform algorithm’, IET Microw. Antennas Propag., 2016, 10, (1), pp. 1624.
        . IET Microw. Antennas Propag. , 1 , 16 - 24
    10. 10)
      • J. Yang , A.F. Frangi , J.Y. Yang .
        10. Yang, J., Frangi, A.F., Yang, J.Y., et al: ‘KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (2), pp. 230.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 2 , 230
    11. 11)
      • K.I. Kim , K. Jung , J.K. Hang .
        11. Kim, K.I., Jung, K., Hang, J.K.: ‘Face recognition using kernel principal component analysis’, IEEE Signal Process. Lett., 2002, 9, (2), pp. 4042.
        . IEEE Signal Process. Lett. , 2 , 40 - 42
    12. 12)
      • L.H. Zhao , X.L. Zhang , X.H. Xu .
        12. Zhao, L.H., Zhang, X.L., Xu, X.H.: ‘Face recognition base on KPCA with polynomial kernels’. Int. Conf. Wavelet Analysis and Pattern Recognition, 2007, pp. 12131216.
        . Int. Conf. Wavelet Analysis and Pattern Recognition , 1213 - 1216
    13. 13)
      • C.K.I. Williams .
        13. Williams, C.K.I.: ‘Learning with kernels: support vector machines, regularization, optimization, and beyond’, J. Am. Stat. Assoc., 2003, 16, (462), pp. 781781.
        . J. Am. Stat. Assoc. , 462 , 781 - 781
    14. 14)
      • Z.Q. Luo , W.K. Ma , M.C. So .
        14. Luo, Z.Q., Ma, W.K., So, M.C., et al: ‘Semidefinite relaxation of quadratic optimization problems’, IEEE Signal Process. Mag., 2010, 27, (3), pp. 2034.
        . IEEE Signal Process. Mag. , 3 , 20 - 34
    15. 15)
      • B. Fuchs .
        15. Fuchs, B.: ‘Application of convex relaxation to array synthesis problems’, IEEE Trans. Antennas Propag., 2014, 62, (2), pp. 634640.
        . IEEE Trans. Antennas Propag. , 2 , 634 - 640
    16. 16)
      • 16. https://en.wikipedia.org/wiki/Principal_component_analysis.
        .
    17. 17)
      • C.A. Balanis . (2016)
        17. Balanis, C.A.: ‘Antenna theory: analysis and design’ (John Wiley & Sons, New York, 2016).
        .
    18. 18)
      • D.M. Pozar .
        18. Pozar, D.M.: ‘Active element pattern’, IEEE Trans. Antennas Propag., 1994, 42, (8), pp. 11761178.
        . IEEE Trans. Antennas Propag. , 8 , 1176 - 1178
    19. 19)
      • A. Haddadi , A. Ghorbani , J. Rashed-Mohassel .
        19. Haddadi, A., Ghorbani, A., Rashed-Mohassel, J.: ‘Cosecant-squared pattern synthesis using a weighted alternating reverse projection method’, IET Microw. Antennas Propag., 2011, 5, (15), pp. 17891795.
        . IET Microw. Antennas Propag. , 15 , 1789 - 1795
    20. 20)
      • 20. https://en.wikipedia.org/wiki/Positive - definite_kernel.
        .
    21. 21)
      • W.S. Chen , P.C. Yuen .
        21. Chen, W.S., Yuen, P.C.: ‘Interpolatory Mercer kernel construction for kernel direct LDA on face recognition’. IEEE Int. Conf. Acoustics, Speech and Signal Processing, 2009, pp. 857860.
        . IEEE Int. Conf. Acoustics, Speech and Signal Processing , 857 - 860
    22. 22)
      • Y. Wang , J. Zhang .
        22. Wang, Y., Zhang, J.: ‘Application of SVM in object tracking based on Laplacian kernel function’. 2016 8th Int. Conf. Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2016, 2, pp. 557561..
        . 2016 8th Int. Conf. Intelligent Human-Machine Systems and Cybernetics (IHMSC) , 557 - 561
    23. 23)
      • 23. https://en.wikipedia.org/wiki/Radial_basis_function_kernel#cite_note-primer-2.
        .
    24. 24)
      • 24. https://en.wikipedia.org/wiki/Polynomial_kernel.
        .
    25. 25)
      • H.T. Lin , C.J. Lin .
        25. Lin, H.T., Lin, C.J.: ‘A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods’, Neural Comput., 2003, pp. 132, Submitted to.
        . Neural Comput. , 1 - 32
    26. 26)
      • V. Popovici , S. Bengio , J.P. Thiran .
        26. Popovici, V., Bengio, S., Thiran, J.P.: ‘Kernel matching pursuit for large datasets’, Adv. Appl. Pattern Recognit., 2005, 38, (12), pp. 23852390.
        . Adv. Appl. Pattern Recognit. , 12 , 2385 - 2390
    27. 27)
      • F. Pérez-Cruz , O. Bousquet .
        27. Pérez-Cruz, F., Bousquet, O.: ‘Kernel methods and their potential use in signal processing’, IEEE Signal Process. Mag., 2004, 21, (3), pp. 5765.
        . IEEE Signal Process. Mag. , 3 , 57 - 65
    28. 28)
      • D. Zhang , S. Chen , Z.H. Zhou .
        28. Zhang, D., Chen, S., Zhou, Z.H.: ‘Learning the kernel parameters in kernel minimum distance classifier’, Adv. Appl. Pattern Recognit., 2006, 39, (1), pp. 133135.
        . Adv. Appl. Pattern Recognit. , 1 , 133 - 135
    29. 29)
      • C. Men , W. Wang .
        29. Men, C., Wang, W.: ‘Kernel parameter selection method based on estimation of convex’, Comput. Eng. Des., 2006, 27, (11), pp. 19611963.
        . Comput. Eng. Des. , 11 , 1961 - 1963
    30. 30)
      • 30. https://en.wikipedia.org/wiki/Newton.
        .
    31. 31)
      • A. Aghasi , H. Amindavar , E.L. Miller .
        31. Aghasi, A., Amindavar, H., Miller, E.L., et al: ‘Flat-top footprint pattern synthesis through the design of arbitrary planar-shaped apertures’, IEEE Trans. Antennas Propag., 2010, 58, (8), pp. 25392552.
        . IEEE Trans. Antennas Propag. , 8 , 2539 - 2552
    32. 32)
      • 32. https://en.wikipedia.org/wiki/Convex_function.
        .
    33. 33)
      • M.C. Grant , S.P. Boyd . (2013)
        33. Grant, M.C., Boyd, S.P.: The CVX Users' Guide. Release 2.0 (beta), CVX Research, Inc., 2013.
        .
    34. 34)
      • P.L. Metzen .
        34. Metzen, P.L.: ‘Globalstar satellite phased array antennas’. Proc. 2000 IEEE Int. Conf. Phased Array Systems and Technology, 2000, 2000, pp. 20721058(2):664-678.
        . Proc. 2000 IEEE Int. Conf. Phased Array Systems and Technology, 2000 , 207 - 210
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.0212
Loading

Related content

content/journals/10.1049/iet-com.2017.0212
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address