access icon free Robust predictive filtering schemes for sub-band CQI feedback compression in 3GPP LTE systems

The third generation partnership project (3GPP) long-term evolution (LTE) cellular system offers high data rate capabilities by leveraging several techniques including link adaptation and frequency selective scheduling. These techniques rely on accurate channel quality indicator (CQI) feedback reports that are sent by the user equipment (UE) to the evolved node B, a process which results in high signalling overhead. In this study, the authors propose a UE-assisted sub-band feedback compression scheme based on a predictive filtering technique to reduce this signalling overhead. Four schemes based on adaptive filters have been designed, implemented and tested in an LTE system level simulator. Simulation results indicate that the proposed compression scheme has shown efficacy with an overall CQI feedback signalling reduction of up to 92.5% whilst maintaining stable sector throughput, when compared with the standard 3GPP CQI feedback mechanism. Although the proposed scheme exhibits low computational and memory complexity, a reduced-complexity scheme achieving an average computational load reduction of up to 35% is also presented.

Inspec keywords: computational complexity; telecommunication scheduling; filtering theory; wireless channels; Long Term Evolution; 3G mobile communication

Other keywords: channel quality indicator feedback; robust predictive filtering scheme; 3GPP Long-Term Evolution cellular system; overall CQI feedback signalling reduction; signalling overhead reduction; third generation partnership project LTE cellular system; link adaptation; UE-assisted sub-band feedback compression scheme; user equipment; average computational load reduction; subband CQI feedback compression; high signalling overhead; frequency selective scheduling; low computational and memory complexity

Subjects: Mobile radio systems; Filtering methods in signal processing

References

    1. 1)
      • 23. Abdulhasan, M., Salman, M., Ng, C., et al: ‘An adaptive threshold feedback compression scheme based on channel quality indicator (CQI) in long term evolution (LTE) system’, J. Wirel. Pers. Commun., 2015, 82, (4), pp. 23232349.
    2. 2)
      • 14. Xu, X., Ni, M., Mathar, R.: ‘Improving QoS by predictive channel quality feedback for LTE’. Proc. Int. Conf. Software, Telecommunications and Computer Networks, September 2013, pp. 15.
    3. 3)
      • 28. IEEE 754-2008: ‘IEEE standard for floating-point arithmetic’, 2008.
    4. 4)
      • 22. Jeon, J., Son, K., Lee, H.-W., et al: ‘Feedback reduction for multiuser OFDM systems’, Trans. Veh. Technol., 2010, 59, (1), pp. 160169.
    5. 5)
      • 17. Sivridis, L., He, J.: ‘A strategy to reduce the signaling requirements of CQI feedback schemes’, J. Wirel. Pers. Commun., 2013, 70, (1), pp. 8598.
    6. 6)
      • 15. Ni, M., Xu, X., Mathar, R.: ‘A channel feedback model with robust SINR prediction for LTE systems’. Proc. Conf. Antennas & Propagation, April 2013, pp. 18661870.
    7. 7)
      • 3. Cisco Visual Networking Index: ‘Global mobile data traffic forecast update, 2015–2020 white paper’. Available athttp://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html, accessed 15 August 2016.
    8. 8)
      • 12. Werthmann, T., Kaschub, M., Proebster, M., et al: ‘Simple channel predictors for lookahead scheduling’. Proc. Conf. Vehicular Technology, May 2012, pp. 16.
    9. 9)
      • 19. Sivridis, L., Wang, X., Choi, J.: ‘Radio resource management for fast fading environments’, J. Commun., 2011, 6, (7), pp. 540548.
    10. 10)
      • 18. Gesbert, D., Alouini, M.S.: ‘How much feedback is multi-user diversity really worth?’. Int. Conf. Communications, June 2004, pp. 234238.
    11. 11)
      • 4. Sesia, S., Toufik, I., Baker, M.: ‘LTE – the UMTS long term evolution: from theory to practice’ (Wiley, Chichester, 2009).
    12. 12)
      • 7. Fa-tang, C., Gen-lin, T.: ‘A novel MCS selection criterion for supporting AMC in LTE system’. Proc. Int. Conf. Computer Application and System Modeling, October 2010, vol. 6, pp. 598603.
    13. 13)
      • 21. Kittipiyakul, S., Boonkajay, A., Aphichartsuphapkhajorn, T.: ‘Performance of low-feedback rate, gradient-based OFDMA subcarrier allocation with partial channel information’. Proc. Symp. Wireless Pervasive Computing, May 2010, pp. 511521.
    14. 14)
      • 30. ETSI TR 102.581: ‘Speed processing, transmission and quality aspects (STQ); a study on the minimum additional required attenuation on the antenna path of the field test equipment’, 2007.
    15. 15)
      • 16. Chiumento, A., Bennis, M., Desset, C., et al: ‘Adaptive CSI and feedback estimation in LTE and beyond: a Gaussian process regression approach’, EURASIP J. Wirel. Commun. Netw., 2015, 1, pp. 114.
    16. 16)
      • 26. Sayed, A.H.: ‘Fundamentals of adaptive filtering’ (Wiley, 2003).
    17. 17)
      • 5. Pauli, M., Wachsmann, U., Tsai, S.: ‘Quality determination for a wireless communications link’. U.S. Patent 2004/0219883, November 2004.
    18. 18)
      • 11. Kang, M., Soon, K.: ‘Performance analysis and optimization of best-M feedback for OFDMA systems’, IEEE Commun. Lett., 2012, 16, (10), pp. 16481651.
    19. 19)
      • 29. Swissqual Field Test Equipment’. Available athttp://www.swissqual.com/en/products/benchmarking/diversity-benchmarker-2/, accessed 15 August2016.
    20. 20)
      • 10. Haghighat, A., Zhang, G., Lin, Z.: ‘Full-band CQI feedback by Haar compression in OFDMA systems’. Proc. Conf. Vehicular Technology, September 2009, pp. 15.
    21. 21)
      • 24. Piro, G., Grieco, L., Boggia, C.F., et al: ‘Simulating LTE cellular systems: an open source framework’, Trans. Veh. Technol., 2011, 60, (2), pp. 498513.
    22. 22)
      • 13. Dai, H., Wang, Y., Shi, C., et al: ‘The evaluation of CQI delay compensation schemes based on Jake's model and ITU scenarios’. Proc. Conf. Vehicular Technology, September 2012, pp. 15.
    23. 23)
      • 9. 3GPP: ‘R1-070187 – DCT partitioning for CQI reporting’. Panasonic, RAN1 Meeting 47, Sorrento, Italy, January 2007.
    24. 24)
      • 20. Hoon, K., Youngnam, H.: ‘An opportunistic channel quality feedback scheme for proportional fair scheduling’, IEEE Commun. Lett., 2007, 11, (3), pp. 501503.
    25. 25)
      • 27. Haykin, S., Widrow, B.: ‘Least mean square adaptive filter’ (Wiley-Interscience, 2003).
    26. 26)
      • 2. Holma, H., Toskala, A.: ‘LTE for UMTS – OFDMA and SC-FDMA based radio access’ (Wiley, 2009).
    27. 27)
      • 1. 3rd Generation Partnership Project: ‘Evolved universal terrestrial radio access (E-UTRA): physical layer procedures (Release 8)’, 2008.
    28. 28)
      • 6. Westman, E.: ‘Calibration and evaluation of the exponential effective SINR mapping (EESM) in 802.16’. Master thesis, The Royal Institute of Technology (KTH), Stockholm, Sweden, 2006.
    29. 29)
      • 25. Haykin, S.: ‘Adaptive filter theory’ (Prentice Hall, 2004).
    30. 30)
      • 8. 3GPP: ‘R1-061777 – DCT based CQI reporting scheme’. LG Electronics, RAN1 LTE Ad Hoc, Cannes, Franes, June 2006.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.0153
Loading

Related content

content/journals/10.1049/iet-com.2017.0153
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading