access icon free Empirical cross-correlation modelling of multiple-input–multiple-output channel considering outdoor building density

This study presents cross-correlation of building density in outdoor environments for fifth generation mobile communications at 781MHz. To avoid interference from Korean digital television (DTV) broadcasting, the authors measured the radio characteristics on Jeju Island using a channel sounder and four-by-four antennas. They derived basic large-scale parameters (LSPs) such as path loss, delay spread, angular spread, and Rician K-factor from eight different sites. The real building standing area was estimated with a geographic information system database. They propose an empirical model from analysis of the correlations between LSPs and building density. This model indicates that building density is not determined by measurement scenario such as urban, suburban, and rural. The proposed model only reflects change in building density for an outdoor environment. Finally, they verify their model through ray-tracing simulation similar to a real environment. This model can be useful in the design of future mobile communications systems according to changes in building density.

Inspec keywords: MIMO communication; 5G mobile communication

Other keywords: multiple-input-multiple-output channel; large-scale parameters; fifth generation mobile communications; channel sounder; geographic information system database; Korean DTV broadcasting; four-by-four antennas; outdoor building density; ray-tracing simulation; LSP; empirical cross-correlation modelling

Subjects: Mobile radio systems

References

    1. 1)
      • 5. Thamae, L.Z., Wu, Z., Konrad, W.: ‘Propagation characteristics of a 2.45 GHz microwave radio frequency identification system’, IET Microw. Antennas Propag., 2009, 3, (1), pp. 3239.
    2. 2)
      • 3. Trivedi, Y.N., Chaturvedi, A.K.: ‘Performance analysis of multiple input single output systems using transmit beamforming and antenna selection with delayed channel state information at the transmitter’, IET Commun., 2011, 5, (6), pp. 827834.
    3. 3)
      • 9. Ruisi, H., Zhangdui, Z., Bo, A., et al: ‘Measurements and analysis of propagation channels in high-speed railway viaducts’, IEEE Trans. Wirel. Commun., 2013, 12, (2), pp. 794805.
    4. 4)
      • 4. Claude, O., Nicolai, C., Bernd, B., et al: ‘Experimental characterization and modelling of outdoor-to-indoor and indoor-to-indoor distributed channels’, IEEE Trans. Veh. Technol., 2010, 59, (5), pp. 22532265.
    5. 5)
      • 23. Slawomir, K., Kamil, S., Ryszard, J.Z.: ‘Analysis of the radio wave propagation in an underground mine based on the modified ray launching method’, IET Microw. Antennas Propag., 2015, 9, (12), pp. 12411248.
    6. 6)
      • 16. Recommendation ITU-R P.1407-4: ‘Multipath propagation and parameterization of its characteristics’, 2009.
    7. 7)
      • 22. Nitesh, S., Giridhar, K.: ‘Biased estimation of Rician K factor’. IEEE Int. Conf. Communication Systems & Signal Processing, Singapore, Singapore, December 2007, pp. 15.
    8. 8)
      • 6. Annika, B., Peter, V., Christian, S., et al: ‘Cross correlation characteristics of large scale parameters in urban macrocell’. Proc. Vehicular Technology Conf. VTC, San Francisco, USA, September 2011, pp. 15.
    9. 9)
      • 17. Qiong, W., Rong, C., Hong, S., et al: ‘Urban building density detection using high resolution SAR imagery’. Proc. Joint Urban Remote Sensing Event, Conf. JURSE, Munich, Germany, April 2011, pp. 4548.
    10. 10)
      • 10. Myoung-Won, J., Jong Ho, K., Jea Ick, C., et al: ‘An enhanced approach for a prediction method of the propagation characteristics in Korean environments at 781 MHz’, ETRI J., 2012, 34, (6), pp. 911921.
    11. 11)
      • 1. Tuong Xuan, T., Kah Chan, T.: ‘Error probability analysis of a novel adaptive beamforming receiver for large-scale multiple-input–multiple-output communication system’, IET Commun., 2015, 9, (2), pp. 291299.
    12. 12)
      • 13. Xiongwen, Z., Lassi, H., Juha, M., et al: ‘Correlations of wide-band channel parameters in street canyon at 2.45 and 5.25 GHz’, IEEE Antennas Wirel. Propag. Lett., 2007, 6, pp. 252254.
    13. 13)
      • 12. Tae Ho, I., Insoo, P., Hyun Jong, Y., et al: ‘An efficient soft-output MIMO detection method based on a multiple-channel-ordering technique’, ETRI J., 2011, 33, (5), pp. 661669.
    14. 14)
      • 19. Gunnar, E., Sara, L., Kia, W., et al: ‘Urban peer-to-peer MIMO channel measurements and analysis at 300 MHz’. Proc. Military Communications Conf. MILCOM, San Diego, USA, November 2008, pp. 18.
    15. 15)
      • 15. Recommendation ITU-R P.1411-5: ‘Propagation data and prediction methods for the planning of short-range outdoor radio communication systems’, 2009.
    16. 16)
      • 21. Cihan, T., Ali, A., Georgios, B.: ‘The Rician K factor: estimation and performance analysis’, IEEE Trans. Wirel. Commun., 2003, 2, (4), pp. 799810.
    17. 17)
      • 8. ITU: World Radiocommunication Conf. 2015(WRC-15) Council Resolution 1343 (C12) - 1.2, 2012.
    18. 18)
      • 2. Ngo, H.O., Larsson, E.G., Marzetta, T.L.: ‘Energy and spectral efficiency of very large multiuser MIMO systems’, IEEE Trans. Commun., 2013, 61, (4), pp. 14361449.
    19. 19)
      • 7. Sagnik, G., Bhasker, D., James, R.Z., et al: ‘Techniques for MIMO channel covariance matrix quantization’, IEEE Trans. Signal Process., 2012, 60, (6), pp. 33403345.
    20. 20)
      • 14. Dongsoo, H., Howard, H., Henry, L., et al: ‘Path-loss prediction models for microcells’, IEEE Trans. Veh. Technol., 1999, 48, (5), pp. 14531462.
    21. 21)
      • 11. David, G., Helmut, B., Dhananjay, A.G., et al: ‘Outdoor MIMO wireless channels: models and performance prediction’, IEEE Trans. Commun., 2002, 50, (12), pp. 19261934.
    22. 22)
      • 20. Xuemin, H., Cheng-Xiang, W., John, T., et al: ‘On space–frequency correlation of UWB MIMO channels’, IEEE Trans. Veh. Technol., 2010, 59, (9), pp. 42014213.
    23. 23)
      • 18. Jae-Joon, P., Myung-Don, K., Heon-Kook, K., et al: ‘Measurement-based stochastic cross-correlation models of a multilink channel in cooperative communication environments’, ETRI J., 2012, 34, (6), pp. 858868.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2016.1440
Loading

Related content

content/journals/10.1049/iet-com.2016.1440
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading