http://iet.metastore.ingenta.com
1887

Hybrid porous-core microstructure terahertz fibre with ultra-low bending loss and low effective material loss

Hybrid porous-core microstructure terahertz fibre with ultra-low bending loss and low effective material loss

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A hybrid porous-core microstructure optical fibre (MOF) is proposed and its guiding properties are characterised for efficient terahertz wave guiding. A numerical investigation using the finite element method showed that a hybrid-core MOF consisted of a diamond-shaped cell and the circular arrangement of air holes exhibited an extremely low-bending loss of 5.24 × 10−13 cm−1 for a bending radius of 1 cm and an operating frequency of 1.0 THz. The proposed fibre also showed a low effective material loss of 0.08 cm−1 at an optimised core porosity of 52%. Moreover, single mode propagation, dispersion and fabrication feasibility of the proposed MOF are discussed. Due to the excellent guiding properties, this MOF can be potentially used in THz imaging, sensing and flexible communication applications.

References

    1. 1)
      • 1. Atakaramians, S., Afshar, V.S., Monro, T.M., et al: ‘Terahertz dielectric waveguides’, Adv. Opt. Photonics, 2013, 5, (2), pp. 169215.
    2. 2)
      • 2. Gallot, G., Jamison, S.P., McGowan, R.W., et al: ‘Terahertz waveguides’, J. Opt. Soc. Am. B, 2000, 17, (5), pp. 851863.
    3. 3)
      • 3. Jeon, T.I., Zhang, J., Goossen, K.W.: ‘THz Sommerfeld wave propagation on a single metal wire’, Appl. Phys. Lett., 2005, 86, (16), 161904.
    4. 4)
      • 4. Mendis, R., Grischkowsky, D.: ‘Undistorted guided-wave propagation of subpicosecond terahertz pulses’, Opt. Lett., 2001, 26, (11), pp. 846848.
    5. 5)
      • 5. Skorobogatiy, M., Dupuis, A.: ‘Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance’, Appl. Phys. Lett., 2007, 90, (11), 113514.
    6. 6)
      • 6. Han, H., Park, H., Cho, M., et al: ‘Terahertz pulse propagation in a plastic photonic crystal fiber’, Appl. Phys. Lett., 2002, 80, (15), 2634.
    7. 7)
      • 7. Atakaramians, S., Afshar, V.S., Fischer, B.M., et al: ‘Porous fibers: a novel approach to low loss THz waveguides’, Opt. Express, 2008, 16, (12), pp. 88458854.
    8. 8)
      • 8. Nielsen, K., Rasmussen, H.K., Adam, A.J., et al: ‘Bendable, low-loss Topas fibers for the terahertz frequency range’, Opt. Express, 2009, 17, (10), pp. 85928601.
    9. 9)
      • 9. Liang, J., Ren, L., Chen, N., et al: ‘Broadband, low-loss, dispersion flattened porous-core photonic bandgap fiber for terahertz (THz) wave propagation’, Opt. Commun., 2013, 295, pp. 257261.
    10. 10)
      • 10. Chen, N.N., Liang, J., Ren, L.Y.: ‘High-birefringence, low-loss porous fiber for single-mode terahertz-wave guidance’, Appl. Opt., 2013, 52, (21), pp. 52975302.
    11. 11)
      • 11. Hasan, M.R., Islam, M.A., Rifat, A.A.: ‘A single mode porous-core square lattice photonic crystal fiber for THz wave propagation’, J. Eur. Opt. Soc. Rapid Publ., 2016, 12, (15), pp. 18.
    12. 12)
      • 12. Hasan, M.R., Anower, M.S., Islam, M.A., et al: ‘Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance’, Appl. Opt., 2016, 55, (15), pp. 41454152.
    13. 13)
      • 13. Doradla, P., Giles, R.H.: ‘Dual-frequency characterization of bending loss in hollow flexible terahertz waveguides’. Proc. Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VII, California, USA, March 2014, 898518.
    14. 14)
      • 14. Hasan, M.R., Anower, M.S., Islam, M.A., et al: ‘Low-loss and bend-insensitive terahertz fiber using rhombic-shaped core’, Appl. Opt., 2016, 55, (30), pp. 84418447.
    15. 15)
      • 15. Lu, J.Y., Kuo, C.C., Chiu, C.M., et al: ‘THz interferometric imaging using subwavelength plastic fiber based THz endoscopes’, Opt. Express, 2008, 16, (4), pp. 24942501.
    16. 16)
      • 16. Reid, C.B., Fitzgerald, A., Reese, G., et al: ‘Terahertz pulsed imaging of freshly excised human colonic tissues’, Phys. Med. Biol., 2011, 56, (14), pp. 43334353.
    17. 17)
      • 17. Ashworth, P.C., MacPherson, E.P., Provenzano, E., et al: ‘Terahertz pulsed spectroscopy of freshly excised human breast cancer’, Opt. Express, 2009, 17, (15), pp. 1244412454.
    18. 18)
      • 18. Agrawal, A., Kejalakshmy, N., Uthman, M., et al: ‘Ultra low bending loss equiangular spiral photonic crystal fibers in the terahertz regime’, AIP Adv., 2012, 2, (2), 022140.
    19. 19)
      • 19. Hassani, A., Dupuis, A., Skorobogatiy, M.: ‘Low loss porous terahertz fibers containing multiple subwavelength holes’, Appl. Phys. Lett., 2008, 92, (7), 071101.
    20. 20)
      • 20. Islam, R., Rana, S., Ahmad, R., et al: ‘Bend-insensitive and low-loss porous core spiral terahertz fiber’, IEEE Photonics Technol. Lett., 2015, 27, (21), pp. 22422245.
    21. 21)
      • 21. Bao, H., Nielsen, K., Rasmussen, H.K., et al: ‘Fabrication and characterization of porous-core honeycomb bandgap THz fibers’, Opt. Express, 2012, 20, (28), pp. 2950729517.
    22. 22)
      • 22. Nielsen, M.D., Mortensen, N.A., Albertsen, M., et al: ‘Predicting macrobending loss for large-mode area photonic crystal fibers’, Opt. Express, 2004, 12, (8), pp. 17751779.
    23. 23)
      • 23. Kejalakshmy, N., Rahman, B.M.A., Agrawal, A., et al: ‘Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method’, Appl. Phys. B, 2008, 93, (1), pp. 223230.
    24. 24)
      • 24. Hasan, M.R., Anower, M.S., Hasan, M.I., et al: ‘Polarization maintaining low-loss slotted core kagome THz fiber’, IEEE Photonics Technol. Lett., 2016, 28, (16), pp. 17511754.
    25. 25)
      • 25. Hasan, M.R., Akter, S.: ‘Extremely low-loss hollow-core bandgap photonic crystal fibre for broadband terahertz wave guiding’, Electron. Lett., 2017, 53, (11), pp. 741743.
    26. 26)
      • 26. Uthman, M., Rahman, B.M.A., Kejalakshmy, N., et al: ‘Design and characterization of low-loss porous-core photonic crystal fiber’, IEEE Photonics J., 2012, 4, (6), pp. 23152325.
    27. 27)
      • 27. Zaytsev, K.I., Katyba, G.M., Kurlov, V.N., et al: ‘Terahertz photonic crystal waveguides based on sapphire shaped crystals’, IEEE Trans. THz Sci. Technol., 2016, 6, (4), pp. 576582.
    28. 28)
      • 28. Kiang, K.M., Frampton, K., Monro, T.M., et al: ‘Extruded single mode non-silica glass holey optical fibres’, Electron. Lett., 2002, 38, (12), pp. 546547.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2016.1306
Loading

Related content

content/journals/10.1049/iet-com.2016.1306
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address