access icon free Transmitter diversity scheme for OFCDMA systems based on space-time spreading with iterative detection receiver

Orthogonal frequency code division multiple access (OFCDMA) system is one of the most promising multi-user wireless communications systems. It outperforms orthogonal frequency division multiplexing (OFDM) and multi-carrier CDMA (MC-CDMA) through utilisation of two-dimensional spreading. This study proposes a downlink air interface that targets data rate increase and bit error rate (BER) performance enhancement with low complexity receiver. The proposed system is an integration of space-time spreading (STS) and OFCDMA that exploits transmit diversity needed for BER enhancing and data rate boosting with low complexity advantage. Further BER improvement was achieved using an effective iterative interference cancellation (IIC) algorithm at the receiver. Analytical and complexity analyses for the proposed system performance are presented in addition to simulation results. The proposed system attains better performance with lower complexity compared to the STS-aided direct sequence MC-CDMA that uses beamforming as a closed-loop transmit diversity. Moreover, the effect of frequency domain spreading factor with different number of iteration loops is investigated. The achieved BER performance was very close to maximal ratio receive combining system with 1Tx and 4Rx. A considerable improvement was obtained by increasing the number of IIC iteration loops. The system performance was enhanced significantly with the frequency domain spreading factor increase.

Inspec keywords: iterative methods; frequency division multiple access; frequency-domain analysis; code division multiple access; OFDM modulation; spread spectrum communication; diversity reception; array signal processing; error statistics; computational complexity; radiofrequency interference; interference suppression

Other keywords: IIC iteration loops; OFCDMA systems; two-dimensional spreading; multicarrier code division multiple access; low-complexity receiver; frequency domain spreading factor; downlink air interface; bit error rate; STS-aided multicarrier direct sequence CDMA; multiuser wireless communication system; iterative detection receiver; maximal ratio receive combining diversity system; beamforming; iterative interference cancellation algorithm; BER performance enhancement; transmitter diversity scheme; closed-loop transmit diversity; orthogonal frequency division multiplexing; orthogonal frequency code division multiple access system; IIC algorithm; space-time spreading

Subjects: Electromagnetic compatibility and interference; Interpolation and function approximation (numerical analysis); Multiple access communication; Radio links and equipment; Signal processing and detection; Other topics in statistics; Modulation and coding methods

References

    1. 1)
      • 19. El-Hajjar, M., Alamri, O., Maunder, R.G., et al: ‘Layered steered space time-spreading-aided generalized MC DS-CDMA’, IEEE Trans. Veh. Technol., 2010, 59, (2), pp. 9991005.
    2. 2)
      • 9. Shah, S.M., Umrani, A.W., Memon, A.A.: ‘Performance comparison of OFDM, MC-CDMA and OFCDM for 4G wireless broadband access and beyond’. Proc. Progress in Electromagnetics Research Symp., Morocco, March 2011, pp. 13961399.
    3. 3)
      • 21. Kadir, M.I., Sugiura, S., Chen, S., et al: ‘Unified MIMO-multicarrier designs: a space-time shift keying approach’, IEEE Commun. Surv. Tutor., 2015, 17, (2), pp. 550579.
    4. 4)
      • 23. Naguib, A.F., Seshadri, N., Calderbank, A.R.: ‘Increasing data rate over wireless channels’, IEEE Signal Process. Mag., 2000, 17, (3), pp. 7692.
    5. 5)
      • 14. Xia, B., Wang, J., Sawahashi, M.: ‘Performance comparison of optimum and MMSE receivers with imperfect channel estimation for VSF-OFCDM systems’, IEEE Trans. Wirel. Commun., 2005, 4, (6), pp. 30513062.
    6. 6)
      • 22. Hochwald, B., Marzetta, T.L., Papadias, C.B.: ‘A transmitter diversity scheme for wideband CDMA systems based on space-time spreading’, IEEE J. Sel. Areas Commun., 2001, 19, (1), pp. 4860.
    7. 7)
      • 18. Li, P., Hamouda, W.: ‘Performance of multiple-input and multiple-output orthogonal frequency and code division multiplexing systems in fading channels’, IET Commun., 2011, 5, (1), pp. 111.
    8. 8)
      • 10. Meenakshi, D., Prabha, S., Raajan, N.R.: ‘Performance analysis of OFCDM, MC-CDMA and OFDM for wire-free’. Proc. 2013 IEEE Conf. on Information & Communication Technologies, Jeju Island, 2013, pp. 451455.
    9. 9)
      • 3. Korhonen, J.: ‘Introduction to 3g mobile communications’ (Artech House, 2003, 2nd edn.).
    10. 10)
      • 8. Mansour, A.H., Elramly, S.H., Sadek, M.: ‘Comparison and performance evaluation of orthogonal frequency and multi-carrier code division multiple access systems’. Proc. the 2011 Int. Conf. on Computer Engineering & Systems, Cairo, Egypt, November 2011, pp. 161166.
    11. 11)
      • 26. Hampton, J.R.: ‘Introduction to MIMO communications’ (Cambridge University Press, 2014).
    12. 12)
      • 20. El-Hajjar, M., Hanzo, L.: ‘Multifunctional MIMO systems: a combined diversity and multiplexing design perspective’, IEEE Wirel. Commun., 2010, 17, (2), pp. 7379.
    13. 13)
      • 5. Glisic, S.G.: ‘Advanced wireless communications: 4G technologies’ (Wiley, 2004).
    14. 14)
      • 24. Hunger, R.: ‘Floating point operations in matrix-vector calculus’ (Techneische Universitat Munchen Associate Institute for Signal Processing, 2007).
    15. 15)
      • 11. Zhou, Y., Wang, J., Sawahashi, M.: ‘Downlink transmission of broadband OFCDM systems – part III: turbo-coded’, IEEE J. Sel. Areas Commun., 2006, 24, (1), pp. 132140.
    16. 16)
      • 17. Basar, E., Aygolu, U.: ‘High-rate full-diversity space-time block codes for three and four transmit antennas’, IET Commun., 2009, 3, (8), pp. 13711378.
    17. 17)
      • 2. Miki, T., Ohya, T., Yoshino, H., et al: ‘The overview of the 4th generation mobile communication system’. Proc. 2005 5th Int. Conf. on Information Communications & Signal Processing, December 2005, pp. 15511555.
    18. 18)
      • 4. Fazel, K., Kaiser, S.: ‘Multi-carrier and spread spectrum systems’ (J. Wiley, 2003).
    19. 19)
      • 1. Lee, W.C.Y.: ‘Wireless and cellular telecommunications’ (McGraw-Hill, 2006, 3rd edn.).
    20. 20)
      • 25. Jadhav, S.P., Hendre, V.S.: ‘Performance of maximum ratio combining (MRC) MIMO systems for Rayleigh fading channel’, Int. J. Sci. Res. Publ., 2013, 3, (2), pp. 14.
    21. 21)
      • 16. Tarokh, V., Jafarkhani, H., Calderbank, A.R.: ‘Space-time block coding for wireless communications: performance results’, IEEE J. Sel. Areas Commun., 1999, 17, (3), pp. 451460.
    22. 22)
      • 6. Saleh, M.Z., Sadek, M., Ramly, S.E.: ‘Modified MIMO-OFDM channel estimation technique for DVB-T2 systems’. Proc. 2014 Int. Conf. on Computational Intelligence and Communication Networks, Bhopal, India, December 2014, pp. 212218.
    23. 23)
      • 12. Zhou, Y., Wang, J., Sawahashi, M.: ‘Downlink transmission of broadband OFCDM systems – part II: effect of Doppler shift’, IEEE Trans. Commun., 2006, 54, (6), pp. 10971108.
    24. 24)
      • 15. Tarokh, V., Seshadri, N., Calderbank, A.R.: ‘Space-time codes for high data rate wireless communication: performance criterion and code construction’, IEEE Trans. Inf. Theory, 1998, 44, (2), pp. 744765.
    25. 25)
      • 7. Tarokh, V.: ‘New directions in wireless communications research’ (Springer, 2009).
    26. 26)
      • 13. Zhou, Y., Wang, J., Sawahashi, M.: ‘Downlink transmission of broadband OFCDM systems – part I: hybrid detection’, IEEE Trans. Commun., 2005, 53, (4), pp. 718729.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2016.1296
Loading

Related content

content/journals/10.1049/iet-com.2016.1296
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading