http://iet.metastore.ingenta.com
1887

Echo state network-based radio signal strength prediction for wireless communication in Northern Namibia

Echo state network-based radio signal strength prediction for wireless communication in Northern Namibia

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A method for predicting radio signal strength using echo state networks (ESNs) is proposed and applied to three different locations in Northern Namibia. This method aims at providing a better way for radio signal strength prediction, which leads to improvements in wireless communication planning, design and analysis. Its performance is compared with the support vector regression (SVR) method optimised for radio propagation modelling. Simulations are conducted in Python using propagation data measured from the three locations based on the following four performance measures: goodness of fit criteria; error measures; computation complexities; and F-test for statistical model comparison. Simulation results show that the ESN method gives a better prediction accuracy in terms of the goodness of fit criteria and the error measures; however, it is inferior to the SVR method in terms of computation complexities. In addition, results from the F-test also indicate that the ESN method provides a significantly better fit than the SVR method.

References

    1. 1)
      • 1. Gupta, N.: ‘Introduction to wireless communication’, in Gupta, N. (Ed.): ‘Inside Bluetooth low energy’ (Artech House Mobile Communications, London, 2013).
    2. 2)
      • 2. Ostlin, E., Zepernick, H.-J., Suzuki, H.: ‘Macrocell path-loss prediction using artificial neural networks’, IEEE Trans. Veh. Technol., 2010, 59, (6), pp. 27352747.
    3. 3)
      • 3. Cernanský, M., Tino, P.: ‘Predictive modeling with echo state networks’. Artificial Neural Networks-ICANN 2008, 2008, no. 2.
    4. 4)
      • 4. Lukoševičius, M.: ‘A practical guide to applying echo state networks’, in Montavon, G., Orr, G.B., Müller, K.-R. (Eds.): ‘Neural networks: tricks of the trade’ (Springer, Berlin Heidelberg, 2012, 2nd ed.), vol. 7700, pp. 659686.
    5. 5)
      • 5. Timoteo, R.D.A., Cunha, D.C., Cavalcanti, G.D.C.: ‘A proposal for path loss prediction in urban environments using support vector regression’. Advanced Int. Conf. on Telecommunications, 2014, vol. 10, no. c, pp. 119124.
    6. 6)
      • 6. Smola, A.J., Sch, B., Schölkopf, B.: ‘A tutorial on support vector regression’, Stat. Comput., 2004, 14, (3), pp. 199222.
    7. 7)
      • 7. Slavakis, K., Yamada, I., Ogura, N.: ‘The adaptive projected subgradient method over the fixed point set of strongly attracting nonexpansive mappings’, Numer. Funct. Anal. Optim., 2006, 27, (7–8), pp. 905930.
    8. 8)
      • 8. Modi, V.: ‘Radio wave propagation’, IOSR J. Electron. Commun. Eng., 2014, 9, (1), pp. 1719.
    9. 9)
      • 9. Temaneh-Nyah, C., Nepembe, J.: ‘Determination of a suitable correction factor to a radio propagation model for cellular wireless network analysis’. 2014 5th Int. Conf. on Intelligent Systems, Modelling and Simulation, 2014, pp. 175182.
    10. 10)
      • 10. Radiocommunication Sector of ITU: ‘Rec. ITU-R P.1546-5: Method for point-to-area predictions for terrestrial services in the frequency range 30 MHz to 3000 MHz’, Geneva, 2013.
    11. 11)
      • 11. Oluwole, F.J., Olajide, O.Y.: ‘MATLAB graphical user interface (GUI) for wireless metropolitan area network optimum performance Okumura-Hata’, Int. J. Sci. Technol., 2013, 2, (6), pp. 429432.
    12. 12)
      • 12. Mom, J.M., Mgbe, C.O., Igwue, G.A.: ‘Application of artificial neural network for path loss prediction in urban macrocellular environment’, Am. J. Eng. Res., 2014, 3, (2), pp. 270275.
    13. 13)
      • 13. Baştanlar, Y., Ozuysal, M.: ‘Introduction to machine learning’, Methods Mol. Biol., 2014, 1107, pp. 105128.
    14. 14)
      • 14. Azpilicueta, L., Rawat, M., Rawat, K.: ‘A ray launching-neural network approach for radio wave propagation analysis in complex indoor environments’, IEEE Trans. Antennas Propag., 2014, 62, (5), pp. 27772786.
    15. 15)
      • 15. Shi, K., Ma, Z., Zhang, R., et al: ‘Support vector regression based indoor location in IEEE 802.11 environments’, Mob. Inf. Syst., 2015, 201, no. Article ID 295652, p. 14.
    16. 16)
      • 16. Sarka, A., Majumdar, S., Bhattacharya, P.P.: ‘Path loss estimation for a wireless sensor network for application in ship’, Int. J. Comput. Sci. Mob. Comput., 2013, 2, (6), pp. 8796.
    17. 17)
      • 17. Sotiroudis, S.P., Siakavara, K., Sahalos, J.N.: ‘A neural network approach to the prediction of the propagation path-loss for mobile communications systems in urban environments’, PIERS Online, 2007, 3, (8), pp. 11751179.
    18. 18)
      • 18. Kasparick, M., Cavalcante, R.L.G., Valentin, S., et al: ‘Kernel-based adaptive online reconstruction of coverage maps with side information’, IEEE Trans. Veh. Technol., 2016, 65, (7), pp. 54615473.
    19. 19)
      • 19. Schmidhuber, J.: ‘Recurrent neural networks’, 2015. Available at http://people.idsia.ch/~juergen/rnn.html, Accessed 16 February 2016.
    20. 20)
      • 20. Lukoševičius, M., Jaeger, H., Schrauwen, B.: ‘Reservoir computing trends’, KI – Künstliche Intelligenz, 2012, 26, pp. 365371.
    21. 21)
      • 21. Han, M., Xu, M.: ‘Predicting multivariate time series using subspace echo state network’, Neural Process. Lett., 2015, 41, (2), pp. 201209.
    22. 22)
      • 22. Jaeger, H.: ‘Echo state network’, Scholarpedia, 2007, 2, (9), p. 2330.
    23. 23)
      • 23. Yu, P., Miao, L., Jia, G.: ‘Clustered complex echo state networks for traffic forecasting with prior knowledge’. Instrumentation and Measurement Technology Conf. (I2MTC), 2011 IEEE, 2011, pp. 15.
    24. 24)
      • 24. Ho, J.: ‘The Wiener-Hopf method and its applications in fluids’ (The University of Melbourne Department, 2007).
    25. 25)
      • 25. Rabin, M.J.A., Hossain, M.S., Ahsan, M.S., et al: ‘Sensitivity learning oriented nonmonotonic multi reservoir echo state network for short-term load forecasting’. Int. Conf. on Informatics, Electronics Vision (ICIEV), 2013, 2013, pp. 16.
    26. 26)
      • 26. Morando, S., Jemei, S., Gouriveau, R., et al: ‘Fuel cells remaining useful lifetime forecasting using echo state network’. Vehicle Power and Propulsion Conf. (VPPC), 2014 IEEE, 2014, pp. 16.
    27. 27)
      • 27. Yusoff, M.-H., Chrol-Cannon, J., Jin, Y.: ‘Modeling neural plasticity in echo state networks for classification and regression’, Inf. Sci. (Ny)., 2016, 364, pp. 184196.
    28. 28)
      • 28. Forney, E.M., Anderson, C.W., Gavin, W.J., et al: ‘Echo state networks for modeling and classification of EEG signals in mental-task brain-computer interfaces’, Fort Collins, 2015, pp. 123.
    29. 29)
      • 29. Fernández Anitzine, I., Romo Argota, J.A., Fontán, F.P.: ‘Influence of training set selection in artificial neural network-based propagation path loss predictions’, Int. J. Antennas Propag., 2012, 2012, pp. 17.
    30. 30)
      • 30. Verstraeten, D., Schrauwen, B., Dieleman, S., et al: ‘Oger: modular learning architectures for large-scale sequential processing’, J. Mach. Learn. Res., 2012, 13, pp. 29952998.
    31. 31)
      • 31. Pedregosa, F., Varoquaux, G., Gramfort, A., et al: ‘Scikit-learn: machine learning in python’, J. Mach. Learn. Res., 2012, 12, pp. 28252830.
    32. 32)
      • 32. Lee, Y.-J., Hsieh, W.-F., Huang, C.-M.: ‘epsilon-SSVR: a smooth support vector machine for epsilon-insensitive regression’, IEEE Trans. Knowl. Data Eng., 2005, 17, (5), pp. 678685.
    33. 33)
      • 33. Bergstra, J., Bengio, Y.: ‘Random search for hyper-parameter optimization’, J. Mach. Learn. Res., 2012, 13, pp. 281305.
    34. 34)
      • 34. Claesen, M., Simm, J., Popovic, D., et al: ‘Easy hyperparameter search using optunity’, arXiv Prepr. arXiv1412.1114, 2014, pp. 15.
    35. 35)
      • 35. Claesen, M., De Moor, B.L.R., Simm, J., et al: ‘Hyperparameter tuning in python using optunity’. Proc. of the Int. Workshop on Technical Computing for Machine Learning and Mathematical Engineering, 2014, pp. 67.
    36. 36)
      • 36. Claesen, M., De Moor, B.: ‘Hyperparameter search in machine learning’. 11th Metaheuristics Int. Conf., 2015, pp. 1014.
    37. 37)
      • 37. Bergstra, J., Bardenet, R., Bengio, Y., et al: ‘Algorithms for hyper-parameter optimization’, 25th Annual Conference on Neural Information Processing Systems (NIPS 2011), 2011, pp. 25462554.
    38. 38)
      • 38. Bergstra, J., Yamins, D., Cox, D.: ‘Making a science of model search’, arXiv Prepr. arXiv1209.5111, 2012, pp. 111.
    39. 39)
      • 39. James, G., Witten, D., Hastie, T., et al: ‘An introduction to statistical learning’ (Springer, 2013), vol. 64, no. 9–12.
    40. 40)
      • 40. Kurz-Kim, J.-R., Loretan, M.: ‘On the properties of the coefficient of determination in regression models with infinite variance variables’, J. Econom., 2014, 181, (1), pp. 1524.
    41. 41)
      • 41. Peng, X., Xu, D., Kong, L., et al: ‘L1-norm loss based twin support vector machine for data recognition’, Inf. Sci. (Ny)., 2016, 340–341, pp. 86103.
    42. 42)
      • 42. Ramirez, D.E.: ‘The generalized F distribution’, J. Stat. Softw., 2000, 5, (1), pp. 114.
    43. 43)
      • 43. Small, A.: ‘Scientific python for both expert and novice programmers’, Comput. Sci. Eng., 2012, 14, (2), pp. 67.
    44. 44)
      • 44. Abdi, H., Williams, L.J.: ‘Tukey's honestly significant difference (HSD) test’, Encycl. Res. Des. Thousand Oaks, CA Sage, 2010, 1, pp. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2016.1290
Loading

Related content

content/journals/10.1049/iet-com.2016.1290
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address