access icon free Build-in wiretap channel I with feedback and LDPC codes by soft decision decoding

Many approaches to build a wiretap channel (WTC) by multi-input multi-output system have been introduced. Different from those approaches, the authors propose a feedback method combined with the low-density parity-check (LDPC) codes for building the WTC I (WTC-I) to achieve unconditional security under single-input single-output system by the soft decision decoding. The novel approach establishes the WTC-I on both the binary symmetric channel and binary input additive white Gaussian noise channel. In order to keep the eavesdropper be fully ignorant about the secret information, randomness is added to the feedback signals from the destination by taking advantage of feedback. In addition, the message to be sent is encoded by the LDPC codes such that it can be correctly decoded by a legitimate receiver. Furthermore, the secret information transmission capacity can be improved by the soft decision decoding.

Inspec keywords: telecommunication security; AWGN channels; decoding; parity check codes; MIMO communication

Other keywords: single-input single-output system; LDPC codes; multi-input multi-output system; secret information transmission capacity; WTC I; build-in wiretap channel I; binary symmetric channel; legitimate receiver; unconditional security; feedback signals; binary input additive white Gaussian noise channel; soft decision decoding; low-density parity-check codes; MIMO system

Subjects: Codes; Radio links and equipment

References

    1. 1)
      • 9. Thangaraj, A., Dihidar, S., Calderbank, A.R., et al: ‘Applications of LDPC codes to the wiretap channel’, IEEE Trans. Inf. Theory, 2007, 53, (8), pp. 29332945.
    2. 2)
      • 18. Esmaeili, M., Dakhilalian, M., Gulliver, T.A.: ‘New secure channel coding scheme based on randomly punctured quasi-cyclic-low density parity check codes’, IET Commun., 2015, 8, (14), pp. 25562562.
    3. 3)
      • 17. Yi, M., Ji, X.S., Huang, K.Z., et al: ‘Achieving strong security based on fountain code with coset pre-coding’, IET Commun., 2014, 8, (14), pp. 24762483.
    4. 4)
      • 16. Zhang, G.Y., Zhou, L., Wen, H.: ‘Modified channel-independent weighted bit flipping decoding algorithm for low-density-parity-check codes’, IET Commun., 2014, 8, (6), pp. 833840.
    5. 5)
      • 3. Csiszar, I., Korner, J.: ‘Broadcast channels with confidential messages’, IEEE Trans. Inf. Theory, 1978, 24, (3), pp. 339348.
    6. 6)
      • 13. Gallager, R.G.: ‘Low-density parity-check codes’, IRE Trans. Inf. Theory, 1968, IT-8, (1), pp. 2128.
    7. 7)
      • 25. Mackay, D.J.C.: ‘Encyclopedia of sparse graph codes’. Available at: http://www.inference.phy.cam.ac.uk/mackay/codes/data html.
    8. 8)
      • 7. Yuksel, M., Erkip, E.: ‘The relay channel with a wire-tapper’. Proc. 41st Annual CISS, 2007, pp. 1318.
    9. 9)
      • 5. Hero, A.O.: ‘Secure space-time communication’, IEEE Trans. Inf. Theory, 2003, 49, (12), pp. 32353249.
    10. 10)
      • 24. Baldi, M., Cancellieri, G., Carassai, A., et al: ‘LDPC codes based on serially concatenated multiple parity-check codes’, IEEE Commun. Lett., 2009, 13, (2), pp. 142144.
    11. 11)
      • 14. David, M.R.: ‘Single parity check product codes and iterative decoding’. PhD thesis, School of Electrical and Electronic Engineering at the University of Canterbury, New Zealand, 2001.
    12. 12)
      • 4. Ozarow, L., Wyner, A.D.: ‘Wire-tap channel II’, AT&T Bell Laboratories Tech. J., 1984, 63, (10), pp. 21352157.
    13. 13)
      • 10. Nloch, M., Barros, J., Rodrigues, M.R.D.: ‘Wireless information theoretic security’, IEEE Trans. Inf. Theory, 2008, 54, (6), pp. 25152534.
    14. 14)
      • 6. Kim, H., Villasenor, J.D.: ‘Secure MIMO communications in a system with equal numbers of transmit and receive antennas’, IEEE Commun. Lett., 2008, 12, (5), pp. 386388.
    15. 15)
      • 22. Richardson, T.J., Urbanke, R.L.: ‘The capacity of low-density parity-check codes under message-passing decoding’, IEEE Trans. Inf. Theory, 2001, 47, pp. 599618.
    16. 16)
      • 23. Hagenauer, J., Offer, E., Papke, L.: ‘Iterative decoding of binary block and convolutional codes’, IEEE Trans. Inf. Theory, 1996, 42, (3), pp. 429445.
    17. 17)
      • 1. Shannon, C.E.: ‘Communication theory of secrecy systems’, Bell Syst. Tech. J., 1949, 28, (4), pp. 656715.
    18. 18)
      • 21. Esmaeili, M., Najafian, M., Gulliver, A.T.: ‘Structured quasi-cyclic low-density parity-check codes based on cyclotomic cosets’, IET Commun., 2015, 9, (4), pp. 541547.
    19. 19)
      • 11. Wen, H., Gong, G., Ho, P.H.: ‘Build-in wiretap channel I with feedback and LDPC codes’, J. Commun. Netw., 2009, 11, (6), pp. 538543.
    20. 20)
      • 2. Wyner, A.D.: ‘The wire-tap channel’, Bell Syst. Tech. J., 1975, 54, (8), pp. 13551387.
    21. 21)
      • 8. Tekin, E., Yener, A.: ‘The general Gaussian multiple-access and two way wire-tap channels: achievable rates and cooperative jamming’, IEEE Trans. Inf. Theory, 2008, 54, (6), pp. 27352751.
    22. 22)
      • 12. Wen, H., Li, S.Q., Zhu, X.P., et al: ‘A framework of the PHY-layer approach to defense against security threats in cognitive radio networks’, IEEE Netw., 2013, 3, (27), pp. 3439.
    23. 23)
      • 19. Huang, H.Y., Wang, Y.G., Wei, G.: ‘Mixed modified weighted bit-flipping decoding of low-density parity-check codes’, IET Commun., 2015, 9, (2), pp. 283290.
    24. 24)
      • 20. Bazzi, L., Richardson, T.J., Urbanke, R.L.: ‘Exact thresholds and optimal codes for the binary-symmetric channel and Gallager's decoding algorithm A’, IEEE Trans. Inf. Theory, 2004, 50, (9), pp. 20102021.
    25. 25)
      • 15. Sobhani, R.: ‘Generalised array low-density parity-check codes’, IET Commun., 2014, 8, (12), pp. 21212130.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2016.0880
Loading

Related content

content/journals/10.1049/iet-com.2016.0880
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading