Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Performance analysis of orthogonal frequency division multiplexing-based cooperative amplify-and-forward networks with non-linear power amplifier over independently but not necessarily identically distributed Nakagami-m fading channels

In this study, performance analysis of variable-gain amplify-and-forward relaying orthogonal frequency division multiplexing-based systems over independently but not necessarily identically distributed Nakagami-m fading channels using non-linear power amplifier (PA) at the relay and maximal ratio combining scheme at destination. Specifically, novel closed-form expressions of outage probability and asymptotic outage probability are investigated for the considered system model. Further, an average symbol error rate (ASER) expression is derived for general-order rectangular quadrature amplitude modulation (RQAM) scheme using cumulative distribution function-based approach, which is also the novel contribution of the work. Since the transfer function of PA used at relay is nonlinear, this introduces non-linear distortion (NLD) in the considered system model. Thus, the impact of NLD and fading parameters on outage probability, diversity gain of the system and ASER performances are analysed. Further, the impact of NLD on constellation order for RQAM scheme is also discussed. The theoretical results are compared with computer simulations to verify the accuracy of the derivations. The derived expressions are generalised over variety of fading environments for integer-valued fading parameter.

References

    1. 1)
      • 20. Chi, D.W., Das, P.: ‘Effect of nonlinear amplifier in companded OFDM with application to 802.11n WLAN’. Proc. IEEE Global Telecommunications Conf. (GLOBECOM), Honolulu, Hawaii, USA, 2009, pp. 16.
    2. 2)
      • 22. Gregorio, F., Werner, S., Laakso, T., et al: ‘Receiver cancellation technique for nonlinear power amplifier distortion in SDMA-OFDM systems’, IEEE Trans. Veh. Technol., 2007, 56, (5), pp. 24992516.
    3. 3)
      • 15. Prasad, R.: ‘OFDM for wireless communications systems’ (Artech House, Norwood, MA, 2004).
    4. 4)
      • 9. Brennan, D.G.: ‘Linear diversity combining techniques’, Proc. IEEE, 2003, 91, (2), pp. 331356.
    5. 5)
      • 35. Jeffrey, A., Zwillinger, D.: ‘Table of integrals, series, and products’ (Academic Press, New York, NY, USA, 2007, 7th edn.).
    6. 6)
      • 1. Laneman, J.N., Tse, D.N.C., Wornell, G.W.: ‘Cooperative diversity in wireless networks: efficient protocols and outage behavior’, Trans. Inf. Theory, 2004, 50, (12), pp. 30623080.
    7. 7)
      • 31. Breiling, M., Ng, D.W.K., Rohde, C., et al: ‘Resource allocation for outdoor-to-indoor multicarrier transmission with shared UE-side distributed antenna systems’. Proc. 81st Vehicular Technology Conf., Glasgow, Scotland, Spring 2015, pp. 17.
    8. 8)
      • 16. Gregorio, F.H., Laakso, T.I.: ‘A novel carrier allocation method for multiuser OFDM system with amplifier nonlinearities’. Proc. 13th European Signal Processing Conf. (EUSIPCO), Antalya, Turkey, 2005, pp. 14.
    9. 9)
      • 10. Pandharipande, A.: ‘Principles of OFDM’, IEEE Potentials, 2002, 21, (2), pp. 1619.
    10. 10)
      • 4. Kumar, N., Bhatia, V., Dixit, D.: ‘Performance analysis of QAM in amplify-and-forward cooperative communication networks over Rayleigh fading channels’, Int. J. Electron. Commun. (AEU), 2017, 72, pp. 8694, doi: 10.1016/j.aeue.2016.11.022.
    11. 11)
      • 30. Dixit, D., Sahu, P.R.: ‘Performance analysis of rectangular QAM with SC receiver over Nakagami-fading channels’, IEEE Commun. Lett., 2014, 18, (7), pp. 12621265.
    12. 12)
      • 33. Rowe, H.E.: ‘Memoryless nonlinearities with Gaussian inputs: elementary results’, Bell Syst. Tech. J., 1982, 61, (7), pp. 15191526.
    13. 13)
      • 8. Mansourkiaie, F., Ahmed, M.H.: ‘Cooperative routing in wireless networks: a comprehensive survey’, IEEE Commun. Surv. Tutorials, 2015, 17, (2), pp. 604626.
    14. 14)
      • 21. Riihonen, T., Werner, S., Gregorio, F., et al: ‘BEP analysis of OFDM relay links with nonlinear power amplifiers’. Proc. IEEE Wireless Communications and Networking Conf. (WCNC), Sydney, Australia, 2010, pp. 16.
    15. 15)
      • 32. Dardari, D., Tralli, V., Vaccari, A.: ‘A theoretical characterization of nonlinear distortion effects in OFDM systems’, IEEE Trans. Commun., 2000, 48, (10), pp. 17551764.
    16. 16)
      • 13. Bellanger, M., Mattera, D., Tanda, M.: ‘Lapped-OFDM as an alternative to CP-OFDM for 5G asynchronous access and cognitive radio’. Proc. IEEE 81st Vehicular Technology Conf., Glasgow, Scotland, Spring 2015, pp. 15.
    17. 17)
      • 27. Kumar, N., Bhatia, V.: ‘Outage analysis of OFDM based AF cooperative systems in selection combining receiver over Nakagami-m fading channels with nonlinear power amplifier’. Proc. IEEE Sensor Signal Processing for Defence (SSPD), Edinburgh, Scotland, 2015, pp. 15.
    18. 18)
      • 29. Nakagami, M.: ‘The m-distribution – a general formula of intensity distribution of rapid fading’. Proc. Statistical Methods in Radio Wave Propagation, Elmsford, NY, 2015.
    19. 19)
      • 5. Hasna, M.O., Alouini, M.S.: ‘End-to-end performance of transmission systems with relays over Rayleigh-fading channels’, IEEE Trans. Wirel. Commun., 2003, 2, (6), pp. 11261131.
    20. 20)
      • 18. Fernandes, C.A.R.: ‘Outage performance of cooperative amplify-and-forward OFDM systems with nonlinear power amplifiers’. Proc. IEEE 13th Int. Workshop SPAWC, Cesme, Turkey, 2012, pp. 459463.
    21. 21)
      • 6. Kumar, N., Bhatia, V.: ‘Performance analysis of amplify-and-forward cooperative networks with best-relay selection over Weibull fading channels’, Wirel. Pers. Commun., 2015, 85, (3), pp. 641653.
    22. 22)
      • 39. Chatzigeorgiou, I., Guo, W., Wassell, I.J., et al: ‘Exact and asymptotic outage probability analysis for decode-and-forward networks’, IEEE Trans. Commun., 2011, 59, (2), pp. 376381.
    23. 23)
      • 17. Fernandes, C.A.R., Da Costa, D.B., de Almeida, A.L.F.: ‘Performance analysis of cooperative amplify-and-forward orthogonal frequency division multiplexing systems with power amplifier non-linearity’, IET Commun., 2014, 8, (18), pp. 32233233.
    24. 24)
      • 37. Kang, Z., Yao, K., Lorenzelli, F.: ‘Nakagami-m fading modeling in the frequency domain for OFDM system analysis’, IEEE Commun. Lett., 2003, 7, (10), pp. 484486.
    25. 25)
      • 23. Eddaghel, M.M., Mannai, U.N., Chambers, J.: ‘Outage probability analysis of an AF cooperative multi-relay network with best relay selection and clipped OFDM transmission’. Proc. Int. Symp. Wireless Communication Systems (ISWCS), IImenau, Germany, 2013, pp. 15.
    26. 26)
      • 3. Yang, Y., Hu, H., Xu, J., et al: ‘Relay technologies for WiMAX and LTE-advanced mobile systems’, IEEE Commun. Mag., 2009, 47, (10), pp. 100105.
    27. 27)
      • 2. Ma, Z., Zhang, Z.Q., Ding, Z.G., et al: ‘Key techniques for 5G wireless communications: network architecture, physical layer, and MAC layer perspectives’, Sci. Chin. Inf. Scie., 2015, 58, (4), pp. 120.
    28. 28)
      • 38. Shah, R.A., Rajatheva, N., Ji, Y.: ‘Outage analysis of dual-hop OFDM relay system with subcarrier mapping in Nakagami-m fading’. Proc. IEEE Int. Conf. Communications (ICC), London, UK, 2015, pp. 18071812.
    29. 29)
      • 28. Kumar, N., Bhatia, V.: ‘Performance analysis of OFDM based AF cooperative systems in selection combining receiver over Nakagami-m fading channels with nonlinear power amplifier’, Int. J. Commun. Syst., 2016, 30, 7, pp. 117, May 2017, doi: 10.1002/dac.3149.
    30. 30)
      • 26. Simmons, D.E., Coon, J.P.: ‘Two-way OFDM-based nonlinear amplify-and-forward relay systems’, IEEE Trans. Veh. Technol., 2016, 65, (5), pp. 38083812.
    31. 31)
      • 40. Romero-Jerez, J.M., Goldsmith, A.J.: ‘Performance of multichannel reception with transmit antenna selection in arbitrarily distributed Nagakami fading channels’, IEEE Trans. Wirel. Commun., 2009, 8, (4), pp. 20062013.
    32. 32)
      • 19. Li, B., Zhao, C., Sun, M., et al: ‘A Bayesian approach for nonlinear equalization and signal detection in millimeter-wave communications’, IEEE Trans. Wirel. Commun., 2015, 14, (7), pp. 37943809.
    33. 33)
      • 14. Zhang, D., Wang, Y., Lu, J.: ‘QoS aware relay selection and subcarrier allocation in cooperative OFDMA systems’, IEEE Commun. Lett., 2010, 14, (4), pp. 294296.
    34. 34)
      • 24. Ahmed, H.A., Sulyman, A.I., Hassanein, H.S.: ‘Bit error rate performance of orthogonal frequency-division multiplexing relaying systems with high power amplifiers and Doppler effects’, Wirel. Commun. Mob. Comput., 2013, 13, (8), pp. 734744.
    35. 35)
      • 7. Zhong, C., Matthaiou, M., Karagiannidis, G.K., et al: ‘Capacity bounds for AF dual-hop relaying in fading channels’, IEEE Trans. Veh. Technol., 2012, 61, (4), pp. 17301740.
    36. 36)
      • 25. Silva, S.L., Fernandes, C.A.R.: ‘Outage analysis of AF OFDM relaying systems with power amplifier nonlinearity’. Proc. IEEE Int. Telecommunications Symp. (ITS), Sao Paulo, Brazil, 2014, pp. 15.
    37. 37)
      • 34. Ikki, S., Ahmed, M.H.: ‘Performance analysis of cooperative diversity wireless networks over Nakagami-m fading channel’, IEEE Commun. Lett., 2007, 11, (4), pp. 334336.
    38. 38)
      • 12. Berardinelli, G., Pajukoski, K., Lahetkangas, E., et al: ‘On the potential of OFDM enhancements as 5G waveforms’. Proc. IEEE 79th Vehicular Technology Conf., Seoul, Korea, Spring 2014, pp. 15.
    39. 39)
      • 36. Kumar, N., Bhatia, V.: ‘Exact ASER analysis of rectangular QAM in two-way relaying networks over Nakagami-m fading channels’, IEEE Wirel. Commun. Lett., 2016, 5, (5), pp. 548551.
    40. 40)
      • 11. Hwang, T., Yang, C., Wu, G., et al: ‘OFDM and its wireless applications: a survey’, IEEE Trans. Veh. Technol., 2009, 58, (4), pp. 16731694.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2016.0797
Loading

Related content

content/journals/10.1049/iet-com.2016.0797
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address