Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Precoded generalised frequency division multiplexing system to combat inter-carrier interference: performance analysis

The expected operating scenarios of fifth-generation (5G) pose a great challenge to orthogonal frequency division multiplexing which has poor out of band spectral properties, stringent synchronisation requirements and large symbol duration. Generalised frequency division multiplexing (GFDM) which is the focus of this work has been suggested in the literature as one of the possible solutions to meet 5G requirements. In this study, the analytical performance evaluation of minimum mean square error (MMSE) receiver for GFDM is presented. The authors also proposed precoding techniques to enhance the performance of GFDM. A simplified expression of signal-to-interference and noise ratio (SINR) for MMSE receiver of GFDM is derived using special properties related to the modulation matrix of GFDM, which are described in this study. This SINR is used to evaluate the bit error rate performance. Precoding schemes are proposed to reduce complexity of GFDM–MMSE receiver without compromising on the performance. Block inverse discrete Fourier transform (BIDFT) and discrete Fourier transform (DFT)-based precoding schemes are found to outperform GFDM–MMSE receiver due to frequency diversity gain while having complexity similar to zero-forcing receiver of GFDM. It is shown that both BIDFT- and DFT-based precoding schemes reduce peak-to-average power ratio significantly. Computational complexities of different transmitters and receivers of precoded and uncoded GFDM are also presented.

References

    1. 1)
    2. 2)
      • 25. Slimane, S.: ‘Peak-to-average power ratio reduction of OFDM signals using pulse shaping’. 2000 IEEE Global Telecommunications Conf., San Francisco, USA, November 2000, pp. 14121416.
    3. 3)
      • 21. Gaspar, I., Michailow, N., Navarro, A., Ohlmer, E., Krone, S., Fettweis, G.: ‘Low complexity GFDM receiver based on sparse frequency domain processing’. 2013 IEEE Vehicular Technology Conf. (VTC Spring), Dresden, Germany, June 2013, pp. 16.
    4. 4)
    5. 5)
      • 5. Santhi, K., Srivastava, V., Senthil Kumaran, G., Butare, A.: ‘Goals of true broad band's wireless next wave (4G–5G)’. 2003 IEEE Vehicular Technology Conf., (VTC Fall), FL, USA, October 2003, pp. 23172321.
    6. 6)
    7. 7)
      • 29. Trapp, G.E.: ‘Inverses of circulant matrices and block circulant matrices’, Kyungpook Math. J., 1973, 13, (1), pp. 1120.
    8. 8)
      • 34. Myung, H., Lim, J., Goodman, D.: ‘Peak-to-average power ratio of single carrier FDMA signals with pulse shaping’. 2006 IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, September 2006, pp. 15.
    9. 9)
      • 22. Alves, B.M., Mendes, L.L., Guimaraes, D.A., Gaspar, I.S.: ‘Performance of GFDM over frequency-selective channels’. Int. Workshop on Telecommunications, Santa Rita do Sapuca, Brazil, 6–9 May 2013.
    10. 10)
    11. 11)
      • 23. Michailow, N., Krone, S., Lentmaier, M., Fettweis, G.: ‘Bit error rate performance of generalized frequency division multiplexing’. 2012 IEEE Vehicular Technology Conf. (VTC Fall), Quebec City, Canada, September 2012, pp. 15.
    12. 12)
      • 9. Bellanger, M.: ‘Physical layer for future broadband radio systems’. 2010 IEEE Radio and Wireless Symp. (RWS), New Orleans, USA, January 2010, pp. 436439.
    13. 13)
    14. 14)
    15. 15)
      • 1. Sesia, S., Toufik, I., Baker, M.: ‘LTE – the UMTS long term evolution: from theory to practice’ (John Wiley & Sons, Hoboken, NJ, USA, 2011).
    16. 16)
      • 14. Michailow, N., Gaspar, I., Krone, S., Lentmaier, M., Fettweis, G.: ‘Generalized frequency division multiplexing: analysis of an alternative multi-carrier technique for next generation cellular systems’. 2012 Int. Symp. on Wireless Communication Systems (ISWCS), Ilmenau, Germany, August 2012, pp. 171175.
    17. 17)
      • 28. Strang, G.: ‘Linear algebra and its applications’ (Brooks Cole, CA, USA, 1988).
    18. 18)
      • 4. METIS: ‘Scenarios, requirement and KPIs for 5G mobile and wireless system’, METIS, April 2013, vol. ICT-317669, no. D1.1.
    19. 19)
      • 26. Michailow, N., Fettweis, G.: ‘Low peak-to-average power ratio for next generation cellular systems with generalized frequency division multiplexing’. 2013 Int. Symp. on Intelligent Signal Processing and Communications Systems (ISPACS), Okinawa, Japan, November 2013, pp. 651655.
    20. 20)
      • 20. Matthe, M., Michailow, N., Gaspar, I., Fettweis, G.: ‘Influence of pulse shaping on bit error rate performance and out of band radiation of generalized frequency division multiplexing’. 2014 IEEE Int. Conf. on Communications Workshops (ICC), Sydney, Australia, June 2014, pp. 4348.
    21. 21)
      • 24. Datta, R., Michailow, N., Lentmaier, M., Fettweis, G.: ‘GFDM interference cancellation for flexible cognitive radio PHY design’. 2012 IEEE Vehicular Technology Conf. (VTC Fall), Quebec City, Canada, September 2012, pp. 15.
    22. 22)
      • 6. Fettweis, G.: ‘A 5G wireless communications vision’, Microw. J., 2012, 55, (12), pp. 2436.
    23. 23)
      • 17. Schaich, F., Wild, T., Chen, Y.: ‘Waveform contenders for 5G – suitability for short packet and low latency transmissions’. 2014 IEEE Vehicular Technology Conf. (VTC Spring), Seoul, Korea, May 2014, pp. 15.
    24. 24)
      • 27. Proakis, J.G., Salehi, M.: ‘Digital communication’ (McGraw-Hill, New York, USA, 2008), ch. 13.
    25. 25)
      • 35. Blahut, R.E.: ‘Fast algorithms for signal processing’ (Cambridge University Press, Cambridge, UK, 2010).
    26. 26)
      • 18. Fettweis, G., Krondorf, M., Bittner, S.: ‘GFDM – generalized frequency division multiplexing’. 2009 IEEE Vehicular Technology Conf. VTC Spring, Glasgow, Scotland, April 2009, pp. 14.
    27. 27)
      • 2. Holma, H., Toskala, A.: ‘LTE for UMTS: evolution to LTE-advanced’ (John Wiley & Sons, Hoboken, NJ, USA, 2010).
    28. 28)
    29. 29)
      • 15. Vakilian, V., Wild, T., Schaich, F., ten Brink, S., Frigon, J.-F.: ‘Universal-filtered multi-carrier technique for wireless systems beyond LTE’. 2013 IEEE Globecom Workshops, Atlanta, USA, December 2013, pp. 223228.
    30. 30)
    31. 31)
      • 30. Simon, M.K., Alouini, M.-S.: ‘Digital communication over fading channels’ (John Wiley & Sons, Hoboken, NJ, USA, 2005), vol. 95.
    32. 32)
    33. 33)
    34. 34)
      • 3. Wunder, G., Kasparick, M., ten Brink, S., et al: ‘5GNOW: challenging the LTE design paradigms of orthogonality and synchronicity’. 2013 IEEE Vehicular Technology Conf. (VTC Spring), Dresden, Germany, June 2013, pp. 15.
    35. 35)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2015.0081
Loading

Related content

content/journals/10.1049/iet-com.2015.0081
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address