access icon free Delay constrained throughput optimised joint scheduling and link adaptation scheme based on imperfect channel state information

This study presents novel joint scheduling and link adaptation schemes (JSL) to maximise a weighted sum of throughputs of wireless links, while their possibly different minimum required throughputs and packet error rate (PER), average power and delay constraints are provisioned. Weights are assigned based on the importance and requirements of the links. Notable features of the proposed scheme in comparison with the previously presented utility based scheduling schemes are: (a) in the designed scheme a statistical bound is presented for the delay instead of average delay constraint or long term queuing delay behaviour, (b) designed transmission scheme utilises adaptive modulation and coding provisioning PER constraint and may be integrated with H automatic repeat request in data link layer to provide error free communication, (c) the presented schemes are designed based on imperfect signal-to-noise ratio (SNR) estimate of the links. In addition to an analytical approach, a JSL scheme based on sub-gradient projection (JSL-SP) is presented in which there is no need to have SNRs probability density functions. Numerical results demonstrate how the proposed JSL schemes outperforms the benchmark schemes and effectively meets various user's requirements.

Inspec keywords: telecommunication scheduling; automatic repeat request; delays; radio links

Other keywords: data link layer; utility based scheduling schemes; statistical bound; sub-gradient projection; delay constrained throughput optimised joint scheduling; H automatic repeat request; signal-to-noise ratio; PER constraint; imperfect channel state information; adaptive modulation and coding; SNR; link adaptation scheme; delay constraints; packet error rate; JSL scheme; wireless links; queuing delay behaviour

Subjects: Radio links and equipment; Protocols

References

    1. 1)
      • 20. Song, Z., Zhang, K., Guan, Y.L.: ‘Statistical adaptive modulation for QAM-OFDM systems’. GLOBECOM, 2002, pp. 706710.
    2. 2)
    3. 3)
    4. 4)
      • 23. Khojastepour, M.A., Sabharwal, A.: ‘Delay-constrained scheduling: power efficiency, filter design, and bounds’. IEEE Trans. INFOCOM 2004, 2004, vol. 3, pp. 19381949.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 26. Haibao, R., Ming, Z., Wuyang, Z., Jinkang, Z.: ‘Energy-efficient scheduling of delay constrained traffic under practical power model’. WCNCW, 2013, pp. 3034.
    9. 9)
    10. 10)
      • 7. Neely, M.J.: ‘Super-fast delay tradeoffs for utility optimal fair scheduling in wireless networks’. IEEE Trans. INFOCOM Computer Communications Proc., 2006, pp. 113.
    11. 11)
    12. 12)
    13. 13)
      • 43. Solo, V., Kong, X.: ‘Adaptive signal processing algorithms: stability and performance’ (Prentice Hall, 1995).
    14. 14)
    15. 15)
      • 42. Nocedal, J., Wright, S.J.: ‘Numerical optimisation’ (Springer Verlag, Berlin, New York, 2006), no. 2.
    16. 16)
      • 14. Andrews, M., Borst, S., Dominique, F., et al: ‘Dynamic bandwidth allocation algorithms for high-speed data wireless networks’ (Bell Labs Technical Memorandum, 2000).
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
      • 38. Bertsekas, D.: ‘Nonlinear programming’ (Athena Scientific, 1999, 2nd edn.).
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 22. Aris, J.F., Goldsmith, A.J.: ‘Adaptive modulation for MIMO multiplexing under average BER constraints and imperfect CSI’. ICC, 2006, pp. 13181325.
    29. 29)
    30. 30)
    31. 31)
      • 25. Wolkerstorfer, M., Nordstrom, T., Statovci, D.: ‘Delay-constrained scheduling for interference-limited multi-carrier systems’. IWCLD, 2009, pp. 15.
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
      • 37. Taki, M., Lahouti, F.: ‘A framework for integrated discrete-rate and power adaptation and user selection in heterogeneous wireless networks’, IEEE Wirel. Adv., 2011, pp. 252257.
    37. 37)
      • 39. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std. 802.11a-1999, 1999.
    38. 38)
    39. 39)
    40. 40)
    41. 41)
      • 28. Wu, D., Negi, R.: ‘Effective capacity: a wireless link model for support of quality of service’, IEEE Trans. Wirel. Commun., 2003, 2, (4), pp. 630643.
    42. 42)
      • 15. Shakkottai, S., Stolyar, A.L.: ‘Scheduling for multiple flows sharing a time-varying channel: the exponential rule’, Anal. Methods Appl. Probab., 2002, 207, pp. 185202.
    43. 43)
      • 35. Gyasi-Agyei, A., Seong-Lyun, K.: ‘Comparison of opportunistic scheduling policies in time-slotted AMC wireless networks’. First Int. Symp. on Wireless Pervasive Computing, 2006, pp. 110.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2014.1031
Loading

Related content

content/journals/10.1049/iet-com.2014.1031
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading