access icon free Design and analysis of a spread-spectrum communication system with chaos-based variation of both phase-coded carrier and spreading factor

This study designs and analyses a new phase-coded spread-spectrum communication system where both phase-coded carrier and spreading factor are varied based on a chaotic behaviour in the communication process. This design aims to reduce the probability of interception of the considered system. Discrete values generated by a chaotic map are exploited to create a non-return-to-zero (NRZ)-chaos sequence and simultaneously make bit duration variable. The NRZ-chaos sequence is then modulated by binary phase-shift keying technique to produce the phased-coded carrier. Owing to chip duration being constant, the variation of bit duration also leads to the variation of spreading factor. Spectrum spreading in the transmitter is performed by multiplying directly the variable-duration bits with the phase-coded carrier. A coherent receiver relying on a direct correlator is used for recovering the data. Design of the transmitter and receiver as well as analysis of bit error probability for the proposed system in cases of single-user and multi-user under additive white Gaussian noise channel is presented. Simulation results are shown to confirm the operation of the designed structures and the obtained analytical performance.

Inspec keywords: Gaussian channels; error statistics; spread spectrum communication; phase coding

Other keywords: communication process; bit error probability; phased coded carrier; phase coded carrier; chaotic map; chaos based variation; non-return-to-zero; Gaussian noise channel; binary phase shift keying technique; NRZ chaos sequence; chaotic behaviour; chip duration; spread spectrum communication system; direct correlator; spectrum spreading; phase coded spread spectrum communication system; bit duration variation; discrete values; spreading factor

Subjects: Radio links and equipment; Codes; Other topics in statistics

References

    1. 1)
    2. 2)
    3. 3)
      • 35. Quyen, N.X., Yem, V.V., Hoang, T.M.: ‘A chaotic pulse-time modulation method for digital communication’, Abstr. Appl. Anal., 2012, 2012, Article ID 835304, p. 15, doi: 10.1155/2012/835304.
    4. 4)
    5. 5)
      • 28. Kaddoum, G., Vu, M., Gagnon, F.: ‘On the performance of chaos shift keying in MIMO communications systems’. Proc. IEEE Wireless Communications and Networking Conf. (WCNC), Cancun-Mexico, March 2011, pp. 14321437.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 27. Kaddoum, G., Roviras, D., Chargé, P., Fournier-Prunaret, D.: ‘Accurate bit error rate calculation for asynchronous chaos-based DS-CDMA over multipath channel’, EURASIP J. Adv. Signal Process.2009, 2009, article number 571307.
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • 23. Quyen, N.X., Yem, V.V., Hoang, T.M.: ‘A chaos-based direct-sequence/spread-spectrum communication scheme’. Proc. Int. Symp. on Theoretical Electrical Engineering (ISTET'13), Pilsen, Czech Republic, June 2013, pp. III-1III-2.
    19. 19)
      • 45. Jeruchim, M.C., Balaban, P., Shanmugan, K.S.: ‘Simulation of communication systems: modeling, methodology and techniques’ (Springer, New York, US, 2000).
    20. 20)
      • 1. Hilborn, R.C.: ‘Chaos and nonlinear dynamics: an introduction for scientists and engineers’ (Oxford University Press, Oxford, 2001)..
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • 4. Zhang, Q., Zheng, J.: ‘Choice of chaotic spreading sequences for asynchronous DS-CDMA communication’. Proc. IEEE Asia-Pacific Conf. CAS, Tianjin, China, 2000, pp. 642645.
    28. 28)
    29. 29)
    30. 30)
    31. 31)
      • 11. Kaddoum, G., Gagnon, F.: ‘Design of a high-data-rate differential chaos-shift keying system’, IEEE Trans. Circuits Syst. II, 2012, 59, (99), pp. 15.
    32. 32)
    33. 33)
    34. 34)
      • 37. Setti, G., Rovatti, R., Mazzini, G.: ‘Synchronization mechanism and optimization of spreading sequences in chaos-based DS-CDMA systems’, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 1999, E82-A, (9), pp. 17371746.
    35. 35)
      • 24. Quyen, N.X., Yem, V.V., Hoang, T.M.: ‘A chaos-based secure direct-sequence/spread-spectrum communication system’. Abstract and Applied Analysis, 2013, 2013, Article ID 764341, p. 11, doi: 10.1155/2013/764341.
    36. 36)
      • 33. Quyen, N.X., Cong, L.V., Long, N.H., Yem, V.V.: ‘An OFDM-based chaotic DSSS communication system with MPSK modulation’. Proc. Int. Conf. Communications and Electronics (ICCE'14), Da Nang, Vietnam, July 2014, pp. 106111.
    37. 37)
    38. 38)
      • 34. Schoolcraft, R.: ‘Low probability of detection communications-LPD waveform design and detection techniques’. Proc. IEEE Military Communications Conf., McLean, Virginia, November 1991, pp. 35313539.
    39. 39)
      • 22. Faleiros, A.C., Perrella, W.J., Rabello, T.N., Santos, A.S., Soma, N.Y.: ‘Chaotic signal generation and transmission’, in Stavroulakis, P. (Ed.): ‘Chaos applications in telecommunications’ (CRC Press, Boca Raton, Florida, US, 2005).
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
      • 2. H-Bateni, G., McGillem, C.D.: ‘Chaotic sequences for spread spectrum: an alternative to PN-sequences’. Proc. IEEE Int. Conf.on Selected Topics in Wireless Communications, Vancouver, BC, Canada, 1992, pp. 437440.
    46. 46)
    47. 47)
    48. 48)
    49. 49)
      • 49. Reed, D.E.: ‘Comparison of symbol-rate detector and radiometer intercept receiver performances in a nonstationary environment’. Proc. IEEE Military Communications Conf., Boston-USA, 1989, vol. 1, pp. 19511955.
    50. 50)
      • 9. Lynnyk, V., Celikovsky, S.: ‘On the anti-synchronization detection for he generalized Lorenz system and its application to secure encryption’, Kybernetika, 2010, 46, pp. 118.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2014.0907
Loading

Related content

content/journals/10.1049/iet-com.2014.0907
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading