access icon free Efficient architecture for algebraic soft-decision decoding of Reed–Solomon codes

Reed–Solomon (RS) codes possess excellent error correction capability. Algebraic soft-decision decoding (ASD) of RS codes can provide better correction performance than the hard-decision decoding (HDD). The low-complexity Chase (LCC) decoding has the lowest complexity cost and similar or even higher coding gain among all of the available ASD algorithms. Instead of employing complicated interpolation technique, the LCC decoding can be implemented based on the HDD. This study proposes a modified serial LCC decoder, which employs a novel syndrome calculation, polynomial selection, Chien search and Forney algorithm block. In addition, an improved two-dimensional optimisation is provided to reduce the hardware complexity of the proposed decoder. Compared with the previous design, the proposed decoder can improve about 1.27 times speed and obtain 1.29 times higher efficiency in terms of throughput-over-slice ratio.

Inspec keywords: Reed-Solomon codes; optimisation; algebraic codes; interpolation; error correction

Other keywords: RS codes; Chien search; polynomial selection; LCC decoding; coding gain; 2D optimisation; HDD; Reed–Solomon codes; interpolation technique; error correction; hard-decision decoding; algebraic soft-decision decoding; ASD algorithms; low-complexity chase decoding; Forney algorithm block

Subjects: Interpolation and function approximation (numerical analysis); Codes; Optimisation techniques

References

    1. 1)
    2. 2)
      • 20. Chen, Y., Parhi, K.K.: ‘Area efficient parallel decoder architecture for long BCH codes’. Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Quebec, Canada, May 2004, pp. 7376.
    3. 3)
    4. 4)
      • 3. Bellorado, J., Kavčić, A.: ‘A low-complexity method for chase-type decoding of Reed-Solomon codes’. Proc. IEEE Int. Symp. on Inf. Theory, Seattle, USA, July 2006, pp. 20372041.
    5. 5)
    6. 6)
      • 22. Paar, C.: ‘Optimised arithmetic for Reed-Solomon encoders’. Proc. IEEE Int. Symp. Inf. Theory, Ulm, Germany, July 1997, pp. 250250.
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 9. Zhang, X., Zhu, J.: ‘Reduced-complexity multi-interpolator algebraic soft-decision Reed-Solomon decoder’. Proc. IEEE Workshop SiPS, October 2010, pp. 398403.
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 5. Zhu, J., Zhang, X., Wang, Z.: ‘Novel interpolation architecture for low-complexity chase soft-decision decoding of Reed-Solomon codes’. Proc. IEEE Int. Symp. Circuits Syst., Seattle, USA, May 2008, pp. 30783081.
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 15. Zhu, J., Zhang, X.: ‘High-speed re-encoder design for algebraic soft-decision of Reed-Solomon codes’. Proc. IEEE Int. Symp. Circuits Syst., Paris, France, May 2010, pp. 465468.
    24. 24)
      • 23. Hu, Q., Wang, Z., Zhang, J., Xiao, J.: ‘Low complexity parallel Chien search architecture for RS decoder’. Proc. IEEE Int. Symp. Circuits Syst., Kobe, Japan, May 2005, pp. 340343.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2014.0460
Loading

Related content

content/journals/10.1049/iet-com.2014.0460
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading