access icon free Analysis of subcarrier intensity modulation-based optical wireless DF relaying over turbulence channels with path loss and pointing error impairments

The authors consider a subcarrier intensity-modulated relayed optical wireless communication system under the combined influence of path loss, atmospheric turbulence and pointing error impairments. The turbulence-induced fading is modelled by independent but not necessarily identically distributed (i.n.i.d.) Gamma–Gamma fading statistics where the relaying protocol followed by the system is decode and forward (DF). First, the statistics of instantaneous signal-to-noise ratio at the destination is derived, followed by the novel and exact closed-form expression for outage probability of the system. Then using the moment generating function-based approach, the authors evaluate error performance of the system in terms of average symbol error rate (SER) for M-ary phase shift keying modulation schemes. Further, as a special case for M = 2, that is, binary phase shift keying modulation scheme, the exact closed-form expression of average SER is derived in terms of mathematically tractable Meijer's G-function and extended generalised bivariate Meijer's G-function. Finally, at the end of the paper, various numerical examples are included to demonstrate the effect of different system parameters on the performance of the system and are verified by Monte-Carlo simulations.

Inspec keywords: optical communication; method of moments; relay networks (telecommunication); optical modulation; decode and forward communication; probability; fading channels; phase shift keying; intensity modulation; atmospheric turbulence; gamma distribution; protocols; Monte Carlo methods; optical losses; error statistics

Other keywords: extended generalised bivariate Meijer G-function; subcarrier intensity-modulated relayed optical wireless communication system; decode and forward relaying; outage probability; Monte-Carlo simulation; optical wireless DF relaying; path loss; binary phase shift keying modulation scheme; M-ary phase shift keying modulation scheme; SER; average symbol error rate; error performance evaluation; turbulence-induced fading model; instantaneous signal-to-noise ratio; atmospheric turbulence channel; relaying protocol; pointing error impairment; identically distributed Gamma-Gamma fading statistics; exact closed-form expression; INID; moment generating function-based approach; mathematically tractable Meijer G-function

Subjects: Free-space optical links; Modulation and coding methods; Radio links and equipment; Monte Carlo methods; Protocols

References

    1. 1)
    2. 2)
      • 14. Sheng, M., Cao, L.-L., Xie, X.-X., et al: ‘Outage performance for parallel relay free-space optical communications with pointing errors over weak turbulence channel’. Proc. Int. Conf. Electronics, Communications and Control, 2012, pp. 249252.
    3. 3)
      • 1. Willerband, H., Ghuman, B.S.: ‘Free space optics: enabling optical connectivity in today's networks’ (Sams Publishing, 2002).
    4. 4)
    5. 5)
    6. 6)
      • 31. Simon, M.K., Alouini, M.S.: ‘Digital communication over fading channels’ (Wiley, New York, 2005, 2nd edn.).
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 13. Wang, J.-B., Jiao, Y., Chen, M., et al: ‘Multi-hop free space optical communications using serial decode-and-forward relay transmissions’, China Commun., 2011, 8, (5), pp. 102110.
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 29. Wolfram: ‘The Wolfram functions site’. Available at: http://functions.wolfram.com/07.34.21.
    22. 22)
      • 28. Shah, M.: ‘On generalization of some results and their applications’, Collectanea Mathematica, 1973, 24, (3), pp. 249266.
    23. 23)
      • 22. Andrews, L.C., Phillips, R.L., Hopen, C.Y.: ‘Laser beam scintillation with applications’ (SPIE Press, Bellingham, WA, 2001).
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • 25. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: ‘Integrals and series’ (Gordon and Breach, 1990), vol. 3.
    28. 28)
      • 26. Adamchik, V.S., Marichev, O.I.: ‘The algorithm for calculating integrals of hypergeometric type function and its realization in reduce system’. Proc. Int. Conf. Symbolic Algebraic Computation, Tokyo, Japan, 1990, pp. 212224.
    29. 29)
    30. 30)
    31. 31)
      • 17. Huang, W., Takayanagi, J., Sakanaka, T., Nakagawa, M.: ‘Atmospheric optical communication system using subcarrier PSK modulation’, IEICE Trans. Commun., 1993, E76-B, pp. 11691177.
    32. 32)
      • 7. Tsiftsis, T.A., Sandalidis, H.G., Karagiannidis, G.K., Sagias, N.C.: ‘Multihop free-space optical communications over strong turbulence channels’. IEEE Int. Conf. Communications, 2006, pp. 27552759.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2014.0292
Loading

Related content

content/journals/10.1049/iet-com.2014.0292
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading