access icon free Analysis and modelling of a novel compact rectenna for indoor applications

Rectenna can be used for remotely charging the rechargeable batteries, commonly used for powering wireless sensors in buildings, with the help of a dedicated RF source. However, in such a process, the effective path loss reduces the RF power level on rectenna which lowers the RF-to-DC conversion efficiency of the system. This study therefore focuses on the design and analysis of an efficient integrated rectifier-antenna (rectennas) for indoor applications. In this proposed study, first a pentagonal antenna is designed at 5 GHz using Ansoft HFSS simulation. The obtained results show that the antenna resonates at two more frequencies, 10.7 and 14.2 GHz, other than the designed frequency. In order to eliminate the signals received by the antenna at these frequencies, a low-pass filter cornered around 5 GHz is designed and integrated with the antenna. As a result, the integrated structure reveals a return loss of around 15 dB at 5 GHz. Next for rectification purpose, a Schottky diode is characterised at 5 GHz. The proposed antenna structure is then matched to the optimal complex impedance of the diode circuit. Consequently the RF–DC conversion efficiency of the rectenna is found to be 46%.

Inspec keywords: microwave filters; microwave antennas; microwave diodes; rectennas; low-pass filters; Schottky diodes

Other keywords: frequency 10.7 GHz; RF-to-DC conversion efficiency; RF source; indoor applications; Ansoft HFSS simulation; compact rectenna; efficient integrated rectifier-antenna; rectification; low-pass filter; Schottky diode; RF power level; frequency 5 GHz; frequency 14.2 GHz; pentagonal antenna; antenna structure; diode circuit; wireless sensors; rechargeable batteries; optimal complex impedance

Subjects: Solid-state microwave circuits and devices; Junction and barrier diodes; Filters and other networks; Single antennas

References

    1. 1)
    2. 2)
      • 27. Tecpoyotl-Torres, M., Vera-Dimas, J.G., Vargas-Bernal, R., Torres-Cisneros, M., Zamudio-Lara, A., Grimalsky Morelos, V.: ‘Pentagonal microstrip antenna equivalent to a circular microstrip antenna for GPS operation frequency’. Memorias del 7° Congreso Internacional de Cómputo en Optimización y Software, CICOS 09, UAEM, Cuernavaca, Morelos, México, pp. 200208, ISBN 978-607-00-1970-8.
    3. 3)
      • 21. Ravelo, B., Jastrzebski, A.K.: ‘EM parameters of regular polygonal waveguide’. Proc. 41st European Microwave Conf., 2011, pp. 786789.
    4. 4)
      • 23. Yoo, T., McSpadden, J., Chang, K.: ‘35 GHz Rectenna implemented with a patch and a Microstrip dipole antenna’. IEEE MTT-S Digest, 1992, pp. 345348.
    5. 5)
      • 19. Moeikham, P., Akkaraekthalin, P.: ‘A pentagonal slot antenna with two-circle stack patch for WLAN/WiMAX’. Proc. 2011 Int. Symp. Intelligent Signal Processing and Communication Systems (lSPACS), 2011.
    6. 6)
    7. 7)
      • 18. Bod, M., Hassani, H.R., Taheri, M.M.S.: ‘Compact printed UWB antenna with a Tuneable extra band’. Proc. 2011 Loughborough Antennas & Propagation Conf., 2011.
    8. 8)
      • 24. McSpadden, J.O., Chang, K.: ‘A dual polarized circular patch rectifying antenna at 2.45 GHz for microwave power conversion and detection’. IEEE MTT-S Digest, 1994, pp. 17491752.
    9. 9)
      • 2. NASA: ‘The final proceedings of the solar power satellite program review’, NASA-TM-84183, 1980.
    10. 10)
    11. 11)
    12. 12)
      • 22. Yadav, R.K., Das, S., Yadava, R.L.: ‘DGS based microstrip patch antennas for UWB systems’. Proc. 3rd IEEE Int. Adv. Computing Conf. (IACC-2013), 2013.
    13. 13)
      • 14. Tecpoyotl-Torres, M., Vera-Dimas, J.G.: ‘Dual band pentagonal microstrip antenna for Wi-Fi applications’. Proc. 2010 Electronics, Robotics and Automotive Mechanics Conf., 2010, pp. 255258.
    14. 14)
      • 1. Ruth, J., Westphal, W.: ‘Study on European aspects of solar power satellites’, ESA-CR 3705/78/F/DK (SC), 2 Vols, 1979.
    15. 15)
      • 11. Ammann, M.J.: ‘The pentagonal planar monopole for digital mobile terminals: bandwidth consideration and modeling’. Proc. 11th Int. Conf. Antennas and Propagation, 2001, pp. 8285.
    16. 16)
    17. 17)
    18. 18)
      • 17. Yadav, R.K., Das, S., Yadava, R.L.: ‘Performances of pentagonal patch antenna for broadband applications’. Proc. National Conf. Frontiers in Electronics Communication and Instrumentation Technology (FECIT 2011), 2011.
    19. 19)
      • 4. Brown, W.C., George, R.H., Heenan, N.I., Wonson, R.C.: ‘U.S. Patent 3 434 678’, March1969.
    20. 20)
      • 12. Bukhori, M.F., Misran, N., Islam, M.T., Yunus, M.M., Shakib, M.N.: ‘Design of microstrip antenna for GPS application’. Proc. 2008 IEEE Int. RF and Microwave Conf., 2008, pp. 464466.
    21. 21)
      • 15. Foudazi, A., Hassani, H.R., Ali Nezhad, S.M.: ‘Dual-band WLAN/UWB printed wide slot antenna’. Proc. 2011 Loughborough Antennas & Propagation Conf., 2011.
    22. 22)
    23. 23)
      • 6. Garg, B., Bahl, I.: ‘Microstrip antenna design handbook’ (Artech House, 2001).
    24. 24)
      • 7. Ammann, M.J.: ‘Square planar monopole antennas’, NCAP99, York, UK, 2001, pp. 3740.
    25. 25)
      • 13. Sharma, B., Sharma, V., Bharadwaj, D., Sharma, K.B., Saxena, V.K., Saini, J.S.: ‘Broadband dual frequency pentagonal microstrip antenna for wireless communication systems’. Proc. Int. Conf. Microwave-08, 2008, pp. 904906.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2014.0275
Loading

Related content

content/journals/10.1049/iet-com.2014.0275
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading