access icon free Towards optimal edge weight distribution and construction of field-compatible low-density parity-check codes over GF(q)

Non-binary low-density parity-check (NB-LDPC) codes can be directly constructed by using algebraic methods, or indirectly constructed by mapping well-designed binary parity-check matrices to non-binary parity-check matrices. Given the Tanner graph (TG) of a NB-LDPC code, the selection of edge weights in the TG significantly affects the performance of the NB-LDPC code. The authors introduce an edge weight distribution (EWD) parameter for the TG of NB-LDPC codes. By utilising particle swarm optimisation (PSO), the EWD is optimised and it has been demonstrated that the optimal EWD approaches a two-element distribution for large field size and high average variable-node degree. With the optimised EWD, the authors construct a class of field-compatible LDPC (FC-LDPC) codes over GF(q) whose parity-check matrices only include elements 0, 1 and 2, and can be encoded and decoded over different field sizes. The simulations demonstrate that the performance of the proposed FC-LDPC codes improves monotonically with increasing field size, and significantly outperforms that of the corresponding algebraic NB-LDPC codes or NB-LDPC codes generated with uniform distribution of non-zero elements over GF(q).

Inspec keywords: parity check codes; particle swarm optimisation; graph theory; decoding; matrix algebra; algebraic codes

Other keywords: variable-node degree; two-element distribution; EWD parameter; nonbinary low-density parity-check codes; NB-LDPC code; nonbinary parity-check matrices; particle swarm optimisation; decoding; GF(q); FC-LDPC codes; field-compatible low-density parity-check codes; algebraic methods; optimal edge weight distribution; Tanner graph; TG; fleld-compatible LDPC codes; binary parity-check matrices; PSO; optimal edge weight construction

Subjects: Optimisation techniques; Algebra; Codes; Combinatorial mathematics

References

    1. 1)
    2. 2)
      • 18. Hu, X.-Y., Eleftheriou, E.: ‘Binary representation of cycle Tanner-graph GF(2b) codes’. Proc. Int. Conf. Communications (ICC), Ruschlikon, Switzerland, July 2004, pp. 528532.
    3. 3)
      • 8. Zhou, B., Kang, J., Tai, Y.-Y., Lin, S., Ding, Z.: ‘High performance nonbinary quasi-cyclic LDPC codes on Euclidean geometries’, IEEE Trans. Commun., 2009, 57, (4), pp. 545554.
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 2. Mackay, D.J.C., Davey, M.C.: ‘Evaluation of Gallager codes for short block length and high rate applications’. Proc. IMA Workshop on Codes, Systems and Graphical Models, 1999, pp. 108112.
    11. 11)
      • 20. Kim, K.: ‘Future memory technology: Challenges and opportunities’. Proc. Int. Symp. VLSI Technology, Systems Applications, Hsinchu, April 2008, p. 59.
    12. 12)
      • 3. Barnault, L., Declercq, D.: ‘Fast decoding algorithm for LDPC over GF(2q)’. Proc. IEEE Information Theory Workshop, Paris, France, 31 March–4 April 2003, pp. 7073.
    13. 13)
    14. 14)
    15. 15)
      • 19. Kennedy, J., Eberhart, R.C.: ‘Particle swarm optimization’. Proc. IEEE Int. Conf. Neural Networks (ICNN), Perth, Australia, November/December 1995.
    16. 16)
    17. 17)
    18. 18)
      • 26. Byers, G.J., Takawira, F.: ‘EXIT charts for non-binary LDPC codes’. Proc. Int. Conf. Communications (ICC), May 2005, pp. 652657.
    19. 19)
      • 6. Voicila, A., Declercq, D., Verdier, F., et al: ‘Low complexity, low-memory EMS algorithm for non-binary LDPC codes’. Proc. IEEE ICC 2007, Glasgow, Scotland, June 2007, pp. 671676.
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 13. Chang, B.Y., Divsalar, D., Dolecek, L.: ‘Non-binary protograph-based LDPC codes for short block-lengths’. Proc. IEEE Information Theory Workshop (ITW), Lausanne, Switzerland, September 2012, pp. 282286.
    25. 25)
    26. 26)
    27. 27)
      • 28. http://www.inference.phy.cam.ac.uk/mackay/codes/data.html.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2014.0216
Loading

Related content

content/journals/10.1049/iet-com.2014.0216
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading