access icon free Information theoretical performance limits of single-carrier underwater acoustic systems

In this study, the authors investigate the information theoretical limits on the performance of point-to-point single-carrier acoustic systems over frequency-selective underwater channels with intersymbol interference. Under the assumptions of sparse and frequency-selective Rician fading channel and non-white correlated Gaussian ambient noise, the authors derive an expression for channel capacity and demonstrate the dependency on channel parameters such as the number, location and power delay profile of significant taps, as well as environmental parameters such as distance, temperature, salinity, pressure and depth. Then, the authors use this expression to determine the optimal carrier frequency, input signalling and bandwidth for capacity maximisation.

Inspec keywords: Rician channels; underwater acoustic communication; intersymbol interference; channel capacity; Gaussian noise

Other keywords: intersymbol interference; nonwhite correlated Gaussian ambient noise; optimal carrier frequency; environmental parameter; sparse frequency-selective Rician fading channel; information theoretical performance; frequency-selective underwater channel; channel capacity maximisation; point-to-point single-carrier underwater acoustic system; power delay proflle

Subjects: Other topics in statistics; Acoustic and other telecommunication systems and equipment; Electromagnetic compatibility and interference; Radio links and equipment

References

    1. 1)
    2. 2)
      • 19. Coates, R.F.: ‘Underwater acoustic systems’ (J. Wiley, 1989).
    3. 3)
    4. 4)
    5. 5)
      • 25. Radosevic, A., Proakis, J.G., Stojanovic, M.: ‘Statistical characterization and capacity of shallow water acoustic channels’. Proc. IEEE OCEANS 2009-EUROPE, May 2009.
    6. 6)
      • 2. Stojanovic, M.: ‘Underwater wireless communications: current achievements and research challenges’. IEEE Oceanic Engineering Society Newsletter, Spring, 2006.
    7. 7)
      • 11. Tse, D.: Capacity of wireless channels inViswanath, P. (Ed.): ‘Fundamentals of wireless communication’ (Cambridge University Press, New York, NY, 2005), pp. 166227.
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • 13. Choudhuri, C., Mitra, U.: ‘Capacity bounds and power allocation for underwater acoustic relay channels with ISI’. Proc. Fourth ACM Int. Workshop on UnderWater Networks, ACM, November 2009, p. 6.
    13. 13)
      • 23. Al-Dharrab, S., Uysal, M.: ‘Information theoretic performance of cooperative underwater acoustic communications’. 2011 IEEE 22nd Int. Symp. Personal Indoor and Mobile Radio Communications (PIMRC), September 2011, pp. 15621566.
    14. 14)
    15. 15)
    16. 16)
      • 30. Gallager, R.G.: ‘An inequality on the capacity region of multiaccess multipath channels’ (Springer US, 1994), pp. 129139.
    17. 17)
      • 18. Brekhovskikh, L.M., Lysanov, I.P.: ‘Fundamentals of ocean acoustics’ (Springer, New York, 2003).
    18. 18)
      • 8. Gkikopouli, A., Nikolakopoulos, G., Manesis, S.: ‘A survey on underwater wireless sensor networks and applications’. 20th Mediterranean Conf. Control & Automation (MED), Barcelona, Spain, July 2012, pp. 11471154.
    19. 19)
      • 7. Hollinger, G., Yerramalli, S., Singh, S., Mitra, U., Sukhatme, G.S.: ‘Distributed coordination and data fusion for underwater search’. Proc. IEEE Conf. Robotics and Automation, 2011, pp. 349355.
    20. 20)
      • 3. Akyildiz, I.F., Pompili, D., Melodia, T.: ‘State of the art in protocol research for underwater acoustic sensor networks’. ACM Mobile Computing and Communication Review, ACM, October 2007.
    21. 21)
      • 27. Cover, T.M., Thomas, J.A.: ‘Elements of information theory’ (John Wiley & Sons, 2012).
    22. 22)
      • 28. Simon, M.K., Alouini, M.S.: ‘Digital communication over fading channels’ (Wiley.com, 2005), vol. 95.
    23. 23)
      • 17. Socheleau, F.X., Stojanovic, M., Laot, C., Passerieux, J.M.: ‘Information-theoretic analysis of underwater acoustic OFDM systems in highly dispersive channels’, J. Electr. Comput. Eng., 2012, doi: 10.1155/2012/716720.
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 1. Vasilescu, I., Kotay, K., Rus, D., Corke, P., Dunbabin, M.: ‘Data collection, storage and retrieval with an underwater optical and acoustical sensor network’. Proc. Sensys, ACM, 2005, pp. 154165.
    29. 29)
    30. 30)
      • 24. Proakis, J.G.: ‘Digital communications’ (McGraw-Hill, 1995).
    31. 31)
    32. 32)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2014.0083
Loading

Related content

content/journals/10.1049/iet-com.2014.0083
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading