Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Secure multiple-input single-output communication – Part I: secrecy rates and switched power allocation

The use of multiple-antenna arrays has attracted much attention for the physical layer security of wireless systems, where the so-called artificial-noise solution can be applied to enhance the communication confidentiality. In the first part of this study, the authors consider secure communication over a multiple-input single-output Rayleigh-fading channel in the presence of a multiple-antenna eavesdropper – referred to as a multiple-input single-output multiple-eavesdropper (MISOME) wiretap channel. Specifically, secure beamforming with artificial noise is treated when the transmitter has access to full channel state information (CSI) of a legitimate channel but only partial CSI of an eavesdropper channel. First, the optimal power allocation between the information-bearing signal and artificial noise (or simulated interference) is derived to maximise the achievable secrecy rate in the presence of a weak or strong eavesdropper. Then, the first-order optimal power allocation strategy is developed in a switched fashion by selecting the best of weak- and strong-eavesdropper solutions for a general eavesdropping attack, and a closed-form expression is derived for the ergodic secrecy rate achieved by secure beamforming with this switched power allocation in the MISOME wiretap channel. The numerical results show that the switched power allocation is a simple but effective approach that nearly achieves the optimal secrecy rate.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • 10. Khisti, A., Wornell, G., Weisel, A., Eldar, Y.: ‘On the Gaussian MIMO wiretap channel’. Proc. IEEE Int. Symp. on Information Theory, Nice, France, June 2007, pp. 24712475.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 20. Gursoy, M.C.: ‘Secure communication in the low-SNR regime: a characterization of the energy-secrecy tradeoff’. Proc. IEEE Int. Symp. on Information Theory, Seoul, Korea, June 2009, pp. 22912295.
    11. 11)
    12. 12)
      • 7. Ekrem, E., Ulukus, S.: ‘Secret communication in presence of colluding eavesdropper’. Proc. IEEE Military Communications Conf., Atlantic, NJ, October 2005, pp. 15011506.
    13. 13)
      • 29. Nguyen, T.V., Jeong, Y., Kwak, J.S., Shin, H.: ‘Secure multiple input single output communication—Part II: δ-secrecy SEP and secrecy diversity’, IET Commun., accepted (Invited Paper).
    14. 14)
      • 8. Parada, P., Blahut, R.: ‘Secrecy capacity of SIMO and slow fading channels’. Proc. IEEE Int. Symp. on Information Theory, Adelaide, Australia, September 2005, pp. 21522155.
    15. 15)
    16. 16)
    17. 17)
      • 30. Gradshteyn, I.S., Ryzhik, I.M.: ‘Table of integrals, series, and products’ (Academic Press, 2007, 7th edn.).
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 9. Li, Z., Trappe, W., Yates, R.: ‘Secret communication via multi-antenna transmission’. Proc. IEEE Conf. Information Sciences and Systems, March 2007.
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2013.0563
Loading

Related content

content/journals/10.1049/iet-com.2013.0563
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address