Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Impact of interference power constraint on multi-hop cognitive amplify-and-forward relay networks over Nakagami-m fading

In this article, the authors study the effect of peak interference power constraint given by the primary receiver on the performance of multi-hop cognitive amplify-and-forward (AF) relay networks. The athours assume that all involved channels are subject to independent, not necessarily identically distributed Nakagami-m fading and the secondary multi-hop relay network operates in channel state information-assisted AF mode. An analysis of the system performance in terms of outage probability and symbol error rate (SER) is presented. Accordingly, closed-form expressions for the tightly bounded outage probability and SER are formulated which are used for quantifying the impact of the fading channels, the interference power constraint and the number of hops on system performance. More importantly, an asymptotic performance analysis, which intuitively reveals benefits of cooperative diversity of the secondary relay network, is established. The analysis shows that the diversity gain of the considered cognitive relay networks is equal to the minimum of the fading severity parameters of all relaying hops. Also, the interference power constraint imposed by the primary receiver only affects the coding gain of the secondary relay network.

References

    1. 1)
      • 11. Chen, Y., Feng, Z., Chen, X.: ‘Joint relay selection and power allocation for energy-constrained multi-hop cognitive networks’. Proc. IEEE Vehicular Technology Conf., Budapest, Hungary, May 2011, pp. 15.
    2. 2)
      • 10. Xiao, Y., Bi, G., Niyato, D.: ‘Game theoretic analysis for spectrum sharing with multi-hop relaying’, IEEE Trans. Wirel. Commun., 2011, 10, (5), pp. 15271537 (doi: 10.1109/TWC.2011.032411.100753).
    3. 3)
      • 5. Luo, L., Zhang, P., Zhang, G., Qin, J.: ‘Outage performance for cognitive relay networks with underlay spectrum sharing’, IEEE Commun. Lett., 2011, 15, (7), pp. 710712 (doi: 10.1109/LCOMM.2011.051011.110426).
    4. 4)
      • 14. Amarasuriya, G., Tellambura, C., Ardakani, M.: ‘Asymptotically-exact performance bounds of AF multi-hop relaying over Nakagami fading’, IEEE Trans. Commun., 2011, 59, (4), pp. 962967 (doi: 10.1109/TCOMM.2011.012711.090592).
    5. 5)
      • 6. Zhong, C., Ratnarajah, T., Wong, K.-K.: ‘Outage analysis of decode-and-forward cognitive dual-hop systems with the interference constraint in Nakagami-m fading channels’, IEEE Trans. Veh. Technol., 2011, 60, (6), pp. 28752879 (doi: 10.1109/TVT.2011.2159256).
    6. 6)
      • 17. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: ‘Integrals and series, Volumn 1’ (Gordon and Breach Science Publishers, New York, 1986).
    7. 7)
      • 12. Bao, V.N.Q., Duong, T.Q.: ‘Outage analysis of cognitive multihop networks under interference constraints’, IEICE Trans. Commun., 2012, E95.B, (3), pp. 10191022 (doi: 10.1587/transcom.E95.B.1019).
    8. 8)
      • 9. Xie, M., Zhang, W., Wong, K.-K.: ‘A geometric approach to improve spectrum efficiency for cognitive relay networks’, IEEE Trans. Wirel. Commun., 2010, 9, (1), pp. 268281 (doi: 10.1109/TWC.2010.01.090180).
    9. 9)
      • 8. Duong, T.Q., da Costa, D.B., Elkashlan, M., Bao, V.N.Q.: ‘Cognitive amplify-and-forward relay networks over Nakagami-m fading’, IEEE Trans. Veh. Technol., 2012, 61, (5), pp. 23682374 (doi: 10.1109/TVT.2012.2192509).
    10. 10)
      • 2. Hasna, M.O., Alouini, M.-S.: ‘Outage probability of multihop transmission over Nakagami fading channels’, IEEE Commun. Lett., 2003, 7, (5), pp. 216218 (doi: 10.1109/LCOMM.2003.812178).
    11. 11)
      • 13. Gradshteyn, I.S., Ryzhik, I.M.: ‘Table of integrals, series and products’, in Jeffrey, A. (Ed.) (Academic Press, San Diego, 2000, 6th edn.).
    12. 12)
      • 16. Renzo, M.D., Graziosi, F., Santucci, F.: ‘A comprehensive framework for performance analysis of dual-hop cooperative wireless systems with fixed-gain relays over generalized fading channels’, IEEE Trans. Wirel. Commun., 2009, 8, (10), pp. 50605074 (doi: 10.1109/TWC.2009.080318).
    13. 13)
      • 3. Boyer, J., Falconer, D.D., Yanikomeroglu, H.: ‘Multihop diversity in wireless relaying channels’, IEEE Trans. Commun., 2004, 52, (10), pp. 18201830 (doi: 10.1109/TCOMM.2004.836447).
    14. 14)
      • 1. Sendonaris, A., Erkip, E., Aazhang, B.: ‘User cooperation diversity-Part I: system description’, IEEE Trans. Commun., 2003, 51, (11), pp. 19271938 (doi: 10.1109/TCOMM.2003.818096).
    15. 15)
      • 7. Duong, T.Q., Bao, V.N.Q., Zepernick, H.-J.: ‘Exact outage probability of cognitive AF relaying with underlay spectrum sharing’, Electron. Lett., 2011, 47, (17), pp. 10011002 (doi: 10.1049/el.2011.1605).
    16. 16)
      • 4. Si, J., Li, Z., Chen, X., Hao, B., Liu, Z.: ‘On the performance of cognitive relay networks under primary user's outage constraint’, IEEE Commun. Lett., 2011, 15, (4), pp. 422424 (doi: 10.1109/LCOMM.2011.030311.110013).
    17. 17)
      • 15. Louie, R.H.Y., Li, Y., Suraweera, H.A., Vucetic, B.: ‘Performance analysis of beamforming in two hop amplify and forward relay networks with antenna correlation’, IEEE Trans. Wirel. Commun., 2009, 8, (6), pp. 31323141 (doi: 10.1109/TWC.2009.080807).
    18. 18)
      • 18. Suraweera, H.A., Tsiftsis, T.A., Karagiannidis, G.K., Nallanathan, A.: ‘Effect of feedback delay on amplify-and-forward relay networks with beamforming’, IEEE Trans. Veh. Technol., 2011, 60, (3), pp. 12651271 (doi: 10.1109/TVT.2011.2112786).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2012.0544
Loading

Related content

content/journals/10.1049/iet-com.2012.0544
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address