access icon free Optical fibre communication cables systems performance under harmful gamma irradiation and thermal environment effects

One problem in the application of fibre optics to military systems is that nuclear (and space) radiation is known to produce colour centres in optical materials, causing a reduction of light transmission over a spectrum of wavelengths. These radiation effects could cause permanent or temporary disruption of a fibre optics transmission system. Thus, the study has investigated the harmful effects of gamma irradiation on fibre communication system links under thermal environment effects over a wide range of operating parameters. Both the ambient temperature and the irradiation dose have severe effects on the system transmission link characteristics and consequently the performance characteristics of optical communication systems. It is also to be noted that the model has deeply developed the modelling basics of transmission communication systems, which may be used to analyse total pulse dispersion, transmitted signal bandwidth, transmission bit rates, radiation induced loss and optical received power by using the soliton transmission technique after different gamma irradiation doses and irradiation times.

Inspec keywords: optical links; optical cables; military communication

Other keywords: optical material; gamma irradiation effect; soliton transmission technique; space radiation; permanent disruption; thermal environment effect; system transmission link characteristics; temporary disruption; transmission communication system; optical fibre communication cables system performance; fibre optics transmission system; military system; transmitted signal bandwidth; gamma irradiation dose; fibre communication system link; transmission bit rate; nuclear radiation; radiation induced loss; total pulse dispersion

Subjects: Optical communications (military and defence); Optical communication equipment; Free-space optical links

References

    1. 1)
      • 13. Agrawal, G.P.: ‘Nonlinear fiber optics’ (Academic Press, 2001, 3rd edn.).
    2. 2)
      • 22. Laroche, M., Gilles, H., Girard, S., Passilly, N., Ait-Ameur, K.: ‘Nanosecond pulse generation in a passively Q-switched Yb doped fiber laser by Cr :YAG saturable absorber’, IEEE Photon. Technol. Lett., 2006, 18, (6), pp. 764766 (doi: 10.1109/LPT.2006.871678).
    3. 3)
      • 18. Sandhu, A.K., Singh, S., Pandey, O.P.: ‘Gamma ray induced modifications of quaternary silicate glasses’, J. Phys. D Appl. Phys., 2008, 41, (16), pp. 456466 (doi: 10.1088/0022-3727/41/16/165402).
    4. 4)
      • 9. Leung, C.K., Wan, K.T., Chen, L.: ‘A novel optical fiber sensor for steel corrosion in concrete structures’, Sensors, 2008, 8, (3), pp. 19601976 (doi: 10.3390/s8031960).
    5. 5)
      • 4. Mohammed, A.E.-N., Saad, A.E.-F., Rashed, A.N.Z., Hageen, H.: ‘Low performance characteristics of optical laser diode sources based on NRZ coding formats under thermal irradiated environments’, Int. J. Comput. Sci. Telecommun., 2011, 2, (2), pp. 2030.
    6. 6)
      • 15. Gan, K.K., Abi, B., Fernando, W., et al: ‘Radiation hard/high speed data transmission using optical links’, Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip., 2009, 67, (1), pp. 240243 (doi: 10.1016/j.nima.2009.03.222).
    7. 7)
      • 7. Alfeeli, B., Pickrell, G., Garland, M.A., Wang, A.: ‘Behavior of random hole optical fibers under gamma ray irradiation and its potential use in radiation sensing applications’, MDPI Sensors J., 2007, 7, (2), pp. 676688 (doi: 10.3390/s7050676).
    8. 8)
      • 16. Stejskal, P., Détraz, S., Papadopoulos, S., et al: ‘Modelling radiation effects in semiconductor lasers for use in SLHC experiments’, J. Instrum., 2010, 5, (2), pp. 2033 (doi: 10.1088/1748-0221/5/12/C12033).
    9. 9)
      • 11. Manek-Hönninger, I., Boullet, J., Cardinal, T., et al: ‘Photodarkening and photobleaching of an ytterbium doped silica double clad LMA fiber’, Opt. Express, 2007, 15, (4), pp. 16061611 (doi: 10.1364/OE.15.001606).
    10. 10)
      • 19. Mohammed, A.E.-N.A., Ayad, N., Rashed, A.N.Z., Hageen, H.M.: ‘Transient behavior and transmission bit rates analysis of optoelectronic integrated devices laser diode (LD) and light emitting diode (LED) under amplification and ionizing irradiation environments’, J. Electr. Electron. Eng. Res., 2011, 3, (7), pp. 121133.
    11. 11)
      • 21. Zhou, Y.P., Chang, G.L., Zhou, J.Q., Ma, J., Tan, L.Y.: ‘Gamma ray irradiation effects on distributed feedback laser diodes’, J. Russ. Laser Res., 2009, 30, (2), pp. 164171 (doi: 10.1007/s10946-009-9064-3).
    12. 12)
      • 12. Mohammed, A.E.-N.A., Ayad, N., Rashed, A.N.Z., Hageen, H.M.: ‘Speed response and performance degradation of high temperature gamma irradiated silicon PIN photodiodes’, Adv. Sci. Lett., 2012, 5, (1), pp. 7480 (doi: 10.1166/asl.2012.1955).
    13. 13)
      • 20. Bondarenko, A.V., Dyad'kin, A.P., Kashchuk, Y.A., et al: ‘A study of radiation resistance of silica optical fibers under conditions of reactor irradiation’, Instrum. Exp. Tech., 2006, 49, (2), pp. 190198 (doi: 10.1134/S0020441206020060).
    14. 14)
      • 14. Srour, J.R., Palko, J.W., Lo, D.H., Liu, S.H., Mueller, R.L., Nocerino, J.C.: ‘Radiation effects and annealing studies on amorphous silicon solar cells’, IEEE Trans. Nucl. Sci., 2009, 56, (6), pp. 33003306 (doi: 10.1109/TNS.2009.2034329).
    15. 15)
      • 5. Leroy, C., Rancoita, P.G.: ‘Particle interaction and displacement damage in silicon devices operated in radiation environments’, J. Rep. Prog. Phys., 2007, 70, (4), pp. 493625 (doi: 10.1088/0034-4885/70/4/R01).
    16. 16)
      • 8. Mohammed, A.E.-N.A., Ayad, N., Rashed, A.N.Z., Hageen, H.M.: ‘Harmful neutrons irradiation and thermal effects on soliton transmission bit rates of vertical cavity surface emitting lasers’, Nonlinear Opt. Quantum Opt., 2011, 42, (2), pp. 161173.
    17. 17)
      • 3. Cochran, D.J., Buchner, S.P., Chen, D., Kim, H.S., LaBel, K.A.: ‘Total ionizing dose and displacement damage compendium of candidate spacecraft electronics for NASA’, IEEE Radiation Effects Data Workshop (REDW), 2009, vol. 77, no. 3, pp. 2531, Quebec City, Canada.
    18. 18)
      • 10. Rashed, A.N.Z.: ‘Speed performance degradation of electro-optic modulator devices by neutrons irradiations at high temperature effects’, IJCEM Int. J. Comput. Eng. Manage., 2011, 14, (1), pp. 18.
    19. 19)
      • 17. Rashed, A.N.Z.: ‘Ultra high transmission capacity of undersea optical fiber cables for upgrading UW-WDM submarine systems’, Can. J. Electr. Electron. Eng., 2011, 2, (10), pp. 481490.
    20. 20)
      • 6. Mohammed, A.E.-N.A., metawe'e, M.A., Rashed, A.N.Z., El-Nabawy, A.E.M.: ‘Unguided nonlinear optical laser pulses propagate in waters with soliton transmission technique’, Int. J. Multidiscip. Sci. Eng. (IJMSE), 2011, 2, (1), pp. 110.
    21. 21)
      • 2. Alfeeli, B., Pickrell, G., Garland, M.A., Wang, A.: ‘Behavior of random hole optical fibers under gamma ray irradiation and its potential use in radiation sensing applications’, J. Sensors, 2007, 7, (5), pp. 676688 (doi: 10.3390/s7050676).
    22. 22)
      • 1. Henschel, H., Köhn, O., Schmidt, H.U., Kirchhof, J., Unger, S.: ‘Radiation iinduced loss in rare earth doped silica fibers’, IEEE Trans. Nucl. Sci., 1998, 45, (3), pp. 15521557 (doi: 10.1109/23.685238).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2012.0313
Loading

Related content

content/journals/10.1049/iet-com.2012.0313
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading