http://iet.metastore.ingenta.com
1887

access icon free Analytical and learning-based spectrum sensing time optimisation in cognitive radio systems

  • HTML
    623.5078125Kb
  • XML
    346.11328125Kb
  • PDF
    526.2880859375Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-com/7/5/IET-COM.2012.0302.html;jsessionid=1cdlnt3ol4c63.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-com.2012.0302&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Wang, B., Liu, K.J.R.: ‘Advances in cognitive radio networks: a survey’, IEEE J. Sel. Topics Signal Process., 2011, 5, (1), pp. 523 (doi: 10.1109/JSTSP.2010.2093210).
    2. 2)
      • 2. He, A., Bae, K.K., Newman, T.R., et al: ‘A survey of artificial intelligence for cognitive radios’, IEEE Trans. Veh. Technol., 2010, 59, (4), pp. 15781592 (doi: 10.1109/TVT.2010.2043968).
    3. 3)
      • 3. Akyildiz, I.F., Lo, B.F., Balakrishnan, R.: ‘Cooperative spectrum sensing in cognitive radio networks: a survey’, Phys. Commun., 2001, 4, (1), pp. 4062.
    4. 4)
      • 4. Shokri-Ghadikolaei, H., Nasiri-Kenari, M.: ‘Sensing matrix setting schemes for cognitive networks and their performance analysis’, IET Commun., 6, (7), pp. 30263035 (doi: 10.1049/iet-com.2012.0225).
    5. 5)
      • 5. Liang, Y.C., Zeng, Y., Peh, E.C.Y., Hoang, A.T.: ‘Sensing-throughput tradeoff for cognitive radio networks’, IEEE Trans. Wirel. Commun., 2008, 7, (4), pp. 13261337 (doi: 10.1109/TWC.2008.060869).
    6. 6)
      • 6. van den Biggelaar, O., Dricot, J.M., Doncker, P.D., Horlin, F.: ‘Sensing time and power allocation for cognitive radios using distributed q-learning’, EURASIP J. Wirel. Commun. Netw., 2012, 2012, pp. 140 (doi: 10.1186/1687-1499-2012-138).
    7. 7)
      • 7. He, J., Xu, C., Li, L.: ‘Joint optimization of sensing time and decision thresholds for wideband cognitive ofdm radio networks’. IET ICWMNN, September 2010, pp. 230233.
    8. 8)
      • 8. Lee, D.J., Jang, M.S.: ‘Optimal spectrum sensing time considering spectrum handoff due to false alarm in cognitive radio networks’, IEEE Commun. Lett., 2009, 13, (12), pp. 899901 (doi: 10.1109/LCOMM.2009.12.091448).
    9. 9)
      • 9. Shokri-Ghadikolaei, H., Sheikholeslami, F., Nasiri-Kenari, M.: ‘Distributed multiuser sequential channel sensing schemes in multichannel cognitive radio networks’, accepted in IEEE Trans. on Wireless Commun. (to appear), Feb 2013..
    10. 10)
      • 10. Shokri-Ghadikolaei, H., Fallahi, R.: ‘Intelligent sensing matrix setting scheme in cognitive networks’, IEEE Commun. Letter, 2012, 16, (11), pp. 18241827.
    11. 11)
      • 11. Fine, T.L.: ‘Feedforward neural network methodology’ (Springer, New York, 1999, 1st edn.).
    12. 12)
      • 12. Kennedy, M.P., Chua, L.O.: ‘Neural networks for nonlinear programming’, IEEE Trans. Circuits Syst., 1988, 35, (5), pp. 554562 (doi: 10.1109/31.1783).
    13. 13)
      • 13. Hornik, K., Stochcombe, M., White, H.: ‘Multilayer feedforward networks are universal approximators’, Neural Netw., 1989, 2, pp. 359366 (doi: 10.1016/0893-6080(89)90020-8).
    14. 14)
      • 14. Hornik, K., Stochcombe, M., White, H.: ‘Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks’, Neural Netw., 1990, 3, pp. 551560 (doi: 10.1016/0893-6080(90)90005-6).
    15. 15)
      • 15. Dayhoff, J.E.: ‘Neural network architectures’ (Van Nostrand Reinhold, New York, 1990).
    16. 16)
      • 16. Fantacci, R., Tarch, D., Marini, M., Rabbini, A.: ‘A neural network approach to MMSE receivers in a DS-CDMA multipath fading environment’, IEEE Trans. Commun., 2006, 54, (5), pp. 778782 (doi: 10.1109/TCOMM.2006.874011).
    17. 17)
      • 17. Zurada, J.M.: ‘Introduction to artificial neural systems’ (Van Nostrand Reinhold, Boston, MA, 1995).
    18. 18)
      • 18. Maa, C., Shanblatt, M.: ‘Linear and quadratic programming neural network analysis’, IEEE Trans. Neural Netw., 1992, 3, (4), pp. 580594 (doi: 10.1109/72.143372).
    19. 19)
      • 19. Monica, , M.S., Sharma, A.K.: ‘Comparative study of energy consumption for wireless sensor networks based on random and grid deployment strategies’, Int. J. Comput. Appl. IJCA, 2010, 6, (1), pp. 2835.
    20. 20)
      • 20. Hashem, S.: ‘Sensitivity analysis of feedforward artificial neural networks with differentiable activation functions’. Proc. IEEE IJCNN, Baltimore, MD, June 1992, vol. 1, pp. 419424.
    21. 21)
      • 21. Abdi, A., Azmi, P.: ‘Intelligent cross-layer adaptation scheme for wireless links with QoS-guranteed traffic’. Proc. Fifth Int. Symp. Telecommunications (IST), Tehran, December 2010, vol. 1, pp. 419424.
    22. 22)
      • 22. Park, S.H., Yoon, H., Kim, J.W.: ‘A cross-layered network cadaptive HD video steaming in digital A/V home network: hannel monitoring and video rate adaptation’, IEEE Trans. Consum. Electron., 2006, 52, (4), pp. 12451252 (doi: 10.1109/TCE.2006.273140).
    23. 23)
      • 23. Stevenson, C.R., Chouinard, G., Lei, W.H.Z., Shellhammer, S.J.: ‘IEEE 802.22: the first cognitive radio wireless regional area network standard’, IEEE Commun. Mag., 2009, 47, (1), pp. 130138 (doi: 10.1109/MCOM.2009.4752688).
    24. 24)
      • 24. Caruana, R., Lawrence, S., Giles, L.: ‘Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping’. Proc. Neural Inf. Process. Syst., Dec. 2001, pp. 402408.
    25. 25)
      • 25. Jiao, L., Bo, L., Wang, L.: ‘Fast sparse approximation for least square support vector machine’, IEEE Trans. Neural Netw., 2007, 18, (3), pp. 685697 (doi: 10.1109/TNN.2006.889500).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2012.0302
Loading

Related content

content/journals/10.1049/iet-com.2012.0302
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address