Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Throughput analysis of shared-memory crosspoint buffered packet switches

Throughput analysis of shared-memory crosspoint buffered packet switches

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a theoretical throughput analysis of two buffered-crossbar switches, called shared-memory crosspoint buffered (SMCB) switches, in which crosspoint buffers are shared by two or more inputs. In one of the switches, the shared-crosspoint buffers are dynamically partitioned and assigned to the sharing inputs, and memory is sped up. In the other switch, inputs are arbitrated to determine which of them accesses the shared-crosspoint buffers, and memory speedup is avoided. SMCB switches have been shown to achieve a throughput comparable to that of a combined input-crosspoint buffered (CICB) switch with dedicated crosspoint buffers to each input but, with less memory than a CICB switch. The two analysed SMCB switches use random selection as the arbitration scheme. The authors modelled the states of the shared-crosspoint buffers of the two switches using a Markov-modulated process and prove that the throughput of the proposed switches approaches 100% under independent and identically distributed uniform traffic. In addition, the authors provide numerical evaluations of the derived formulas to show how the throughput approaches asymptotically to 100%.

References

    1. 1)
      • Chrysos, N., Katevenis, M.: `Crossbar with minimally-sized crosspoint buffers', Proc. IEEE HPSR 2007, May 2007, p. 1–7.
    2. 2)
      • Xilinx Virtex-7 datasheet. Available at http://www.xilinx.com/products/silicon-devices/fpga/virtex-7/index.htm, last accessed December 2011.
    3. 3)
      • Packet size distribution comparison between Internet links in 1998–2008.
    4. 4)
    5. 5)
      • Gramsamer, F., Gusat, M., Luijten, R.: `Optimizing flow control for buffered switches', Proc. IEEE ICCCN 2002, October 2002, p. 438–443.
    6. 6)
      • Yoshigoe, K.: `Threshold-based exhaustive round-robin for the CICQ switch with virtual crosspoint queues', Proc. IEEE ICC 2007, June 2007, p. 6325–6329.
    7. 7)
      • Al-saber, N., Oberoi, S., Rojas-Cessa, R., Ziavras, S.G.: `Concatenating packets for variable-length input-queue packet switches with cell-based and packet-based scheduling', Proc. IEEE Sarnoff Symp., April 2008, Princeton, NJ, p. 1–5.
    8. 8)
    9. 9)
      • Javadi, T., Magill, R., Hrabik, T.: `A high-throughput algorithm for buffered crossbar switch fabric', Proc. IEEE ICC 2001, June 2001, p. 1581–1591.
    10. 10)
      • Yi, P., Li, H., Yu, J., Wang, B.: `Scheduling multicast and unicast traffic in buffered crossbar switches', IET Conf. Pub. CP525, November 2006, p. 1–4.
    11. 11)
      • Goldrian, G.A., Leppla, B., Schumacher, N.: `Buffered crossbar switch', US Patent 7826434, 2 November 2010.
    12. 12)
      • Bianco, A., Franceschinis, M., Ghisolfi, S.: `Frame-based matching algorithms for input-queued switches', Proc. IEEE HPSR 2002, November 2002, p. 69–76.
    13. 13)
      • Mhamdi, L., Hamdi, M.: `Practical scheduling algorithms for high-performance packet switches', Proc. IEEE ICC, May 2003, p. 1659–1663.
    14. 14)
      • Dong, Z., Rojas-Cessa, R.: `Long round-trip time support with shared-memory crosspoint buffered packet switch', Proc. IEEE 13th Annual Symp. on High Performance Interconnects, August 2005, p. 138–143.
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • Rojas-Cessa, R., Oki, E., Chao, H.J.: `CIXOB-1: combined input-crosspoint-output buffered packet switch', Proc. IEEE GLOBECOM 2001, November 2001, 4, p. 2654–2660.
    19. 19)
    20. 20)
      • Abel, F., Minkenberg, C., Luijten, R.P., Gusat, M., Iliadis, I.: `A four-terabit single-stage packet switch with large round-trip time support', Proc. High Performance Switching and Routing, August 2002, p. 5–14.
    21. 21)
    22. 22)
    23. 23)
      • Rojas-Cessa, R., Oki, E., Jing, Z., Chao, H.J.: `CIXB-1: combined input-one-cell-crosspoint buffered switch', Proc. IEEE HPSR 2001, May 2001, p. 324–329.
    24. 24)
      • Dong, Z., Rojas-Cessa, R.: `Input- and output-based shared-memory crosspoint-buffered packet switches for multicast traffic switching and replication', Proc. IEEE ICC, May 2008, Beijing, China, p. 1–6.
    25. 25)
      • Yoshigoe, K., Christensen, K.J.: `A parallel-polled virtual output queue with a buffered crossbar', Proc. IEEE HPSR 2001, May 2001, p. 271–275.
    26. 26)
    27. 27)
    28. 28)
    29. 29)
      • Hu, C., Chen, X., Li, W., Liu, B.: `Fixed-length switching vs. variable- length switching in input-queued IP switches', Proc. IEEE Workshop on IP Operations and Management, October 2004, p. 117–122.
    30. 30)
      • Cai, L., Rojas-Cessa, R., Kijkanjanarat, T.: `Avoiding speedup from bandwidth overhead in a practical output-queued packet switch', IEEE Int. Conf. on Communications (ICC), 2011, 2011, Japan, p. 1–5.
    31. 31)
      • Luijten, R., Minkenberg, C., Gusat, M.: `Reducing memory size in buffered crossbars with large internal flow control latency', Proc. IEEE Globecom 2003, December 2003, 7, p. 3683–3687.
    32. 32)
      • Katevenis, M., Passas, G., Simos, D., Chrysos, N.: `Variable packet size buffered crossbar (CICQ) switches', Proc. IEEE ICC 2004, June 2004, 2, p. 1090–1096.
    33. 33)
      • M. Nabeshima . Performance evaluation of a combined input- and crosspoint-queued switch. IEICE Trans. Commun. , 3 , 737 - 741
    34. 34)
      • Wang, W.F., Lee, F.C., Lu, G.L.: `A shared-memory design for crosspoint buffered switches under mixed uni- and multicast traffic', IEEE 24th Int. Conf. on Advanced Information Networking and Applications Workshops (WAINA), 2010, April 2010, p. 133–138.
    35. 35)
      • Y. Doi , N. Yamanaka . A high-speed ATM switch with input and cross-point buffers. IEICE Trans. Commun. , 3 , 310 - 314
    36. 36)
    37. 37)
      • Sinha, R., Papadopoulos, C., Heidemann, J.: `Internet packet size distributions: some observations', Technical Report ISI-TR-2007-643, May 2007., Available at http://www.isi.edu/johnh/PAPERS/Sinha07a/index.html, last accessed December 2011.
    38. 38)
      • Yoshigoe, K.: `The CICQ switch with virtual crosspoint queues for large RTT', Proc. IEEE ICC 2006, June 2006, p. 299–303.
    39. 39)
      • Dong, Z., Rojas-Cessa, R.: `Shared-memory combined input-crosspoint buffered packet switch for differentiated services', IEEE Global Telecommunications Conf., 2006, GLOBECOM’06, December 2006, p. 1–6.
    40. 40)
    41. 41)
      • Kornaros, G.: `BCB: a buffered crossbar switch fabric utilizing shared memory', Ninth EUROMICRO Conf. on Digital System Design: Architectures, Methods and Tools, 2006, DSD 2006, p. 180–188.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2011.0744
Loading

Related content

content/journals/10.1049/iet-com.2011.0744
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address