Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Orthogonal chaotic vector shift keying in digital communications

Orthogonal chaotic vector shift keying in digital communications

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An orthogonal chaotic vector shift keying digital communication scheme is presented. The main characteristics of the scheme are increased data transmission rates with greatly improved robustness and an increase in security of communications links because of the structure of the scheme and the nature of the message bearer. Compared with some existing schemes, for example, quadrature chaos shift keying (QCSK) reported in the literature, the noise rejection is improved by an increase in the ‘inter-symbolic separation’. Furthermore, a new method of characterising non-linear processing elements in complex communication schemes has been presented. Based on this, a simple modelling and evaluation method to determine the bit error rates of these schemes is derived. Various simulated results are presented to demonstrate these achievements.

References

    1. 1)
      • Kennedy, M.P., Kolumbán, G., Kis, G., Jákó, A.: `Recent advances in communication with chaos', Proc. IEEE Int. Symp. on Circuits and System ISCAS'98, 1998, p. 461–464.
    2. 2)
      • Wren, T.J.: `Orthogonal chaotic vector shift keying in digital communications', 2007, DPhil, .
    3. 3)
      • Z. Galias , G.M. Maggio . Quadrature chaos-shift keying. IEEE Trans. Circuits Syst.–I: Fundam. Theory Appl. , 12 , 1510 - 1519
    4. 4)
      • L.M. Pecora , T.L. Carroll . Synchronizing hyperchaotic volume-preserving maps and circuits. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. , 6 , 656 - 659
    5. 5)
      • Kolumbán, G., Kennedy, M.P., Kis, G.: `Multilevel differential chaos shift keying', Proc. Int. Workshop, Nonlinear Dynamics of Electronics System NDES'97, 1997, p. 191–196.
    6. 6)
      • J. Dunlop , D.G. Smith . (1994) Telecommunications engineering.
    7. 7)
      • P.Z. Peebles . (1987) Digital communications systems.
    8. 8)
      • G. Kolumbán , M.P. Kennedy , L.O. Chua . The role of synchronization in digital communication using chaos – part II: chaotic modulation and chaotic synchronization. IEEE Trans. Circuits Syst. I , 1129 - 1140
    9. 9)
      • J. Alvarez , H. Puebla , I. Cervantes . Stability of observer-based chaotic communications for a class of Lur'e systems. Int. J. Bifurcation Chaos , 7 , 1605 - 1618
    10. 10)
      • G. Kolumbán , G. Kis , Z. Jákó , M.P. Kennedy . FM-DCSK: a robust modulation scheme for chaotic communications. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. , 9 , 1798 - 1802
    11. 11)
      • C. Williams . Robust chaotic communications exploiting waveform diversity. Part 1: correlation detection and implicit coding. IET Commun. , 10 , 1213 - 1222
    12. 12)
      • L.M. Pecora , T.L. Carroll . Synchronization in chaotic systems. Phys. Rev. Lett. , 821 - 824
    13. 13)
      • W. Yu , A. Morales , G. Fernandez . Robust chaotic communication via high gain observer. Int. J. Syst. Control Commun. , 2 , 179 - 192
    14. 14)
      • M. Schwartz . (1980) Information transmission modulation and noise.
    15. 15)
      • J.G. Proakis . (1995) Digital communications.
    16. 16)
      • L.M. Pecora , T.L. Carroll . Driving systems with chaotic signals. Phys. Rev. A , 2374 - 2384
    17. 17)
      • L.W. Couch . (1997) Digital and analog communication systems.
    18. 18)
      • K.M. Cuomo , A.V. Oppenheim . Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. , 65 - 68
    19. 19)
      • C. Williams . Robust chaotic communications exploiting waveform diversity. Part 2: complexity reduction and equalisation. IET Commun. , 10 , 1223 - 1229
    20. 20)
      • G. Kolumbán , M.P. Kennedy , L.O. Chua . The role of synchronization in digital communications using chaos – part II: chaotic modulation and chaotic synchronization. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. , 11 , 1129 - 1140
    21. 21)
      • F. Ricardo , J. Ramón , S. Gualberto . A chaos-based communication scheme via robust asymptotic feedback. IEEE Trans. Circuits Syst.–I: Fundam. Theory Appl. , 10 , 1161 - 1170
    22. 22)
      • S.L. Chen , S.M. Chang , W.W. Lin , T.T. Hwang . Digital secure-communication using robust hyper-chaotic systems. Int. J. Bifurcation Chaos , 11 , 3325 - 3339
    23. 23)
      • Jákó, Z.: `Performance improvement of DCSK modulation', Proc. Int. Workshop, Nonlinear Dynamics of Electronics Systems NDES'98, 1998, p. 119–122.
    24. 24)
      • G. Kolumbán , M.P. Kennedy , L.O. Chua . The role of synchronization in digital communication using chaos – part I: fundamentals of digital communication. IEEE Trans. Circuits Syst. I , 927 - 935
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2009.0122
Loading

Related content

content/journals/10.1049/iet-com.2009.0122
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address