Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Performance-complexity tradeoff of convolutional codes for broadband fixed wireless access systems

Performance-complexity tradeoff of convolutional codes for broadband fixed wireless access systems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors investigate the performance-complexity tradeoff of convolutional codes for broadband fixed wireless access systems by considering the effects of quantisation and path metric memory in practical Viterbi decoding implementations. They show that in systems with limited antenna diversity, low-memory codes achieve a better error-rate performance compared to that of high-memory codes. Only in systems with considerable antenna diversity, can the performance of a convolutional code be improved by increasing its memory size. Nevertheless, the authors demonstrate that the coding advantage offered by the high-memory codes is not large enough to justify the significant increase in implementation complexity. In particular, memory-2 convolutional codes achieve a coding gain of up to 1.2 dB over their memory-8 counterparts in single-input single-output fixed wireless access systems. The situation is reversed when multiple antennas are used, but the decoder of memory-8 codes occupies at least 130 times more silicon area than that of memory-2 codes.

References

    1. 1)
      • G.C. Clark , J.B. Cain . (1981) Error-correcting coding for digital communications.
    2. 2)
      • J.G. Proakis . (1995) Digital communications.
    3. 3)
      • Carson, W.R., Chatzigeorgiou, I., Wassell, I.J., Rodrigues, M.R.D., Carrasco, R.: `On the performance of iterative demapping and decoding techniques over quasi-static fading channels', Proc. IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications, September 2007, Athens, Greece.
    4. 4)
      • Qualcomm Inc, San Diego, http://www.qualcomm.com.
    5. 5)
      • Austriamicrosystems, AG, Austria, http://asic.austriamicrosystems.com.
    6. 6)
      • A. Slaney , Y. Sun . Space–time coding for wireless communications: an overview. IEE Proc. Commun. , 4 , 509 - 518
    7. 7)
    8. 8)
      • J.A. Heller , I.M. Jacobs . Viterbi decoding for satellite and space communication. IEEE Trans. Commun. Tech. , 5 , 835 - 848
    9. 9)
      • G. Fettweis , H. Meyr . Parallel Viterbi algorithm implementation:breaking the ACS-bottleneck. IEEE Trans. Commun. , 8 , 785 - 790
    10. 10)
      • P. Xiao , R. Carrasco , I.J. Wassell . Theoretical performance of single and multiple antenna BFWA systems. IET Commun. , 3 , 496 - 506
    11. 11)
      • IEEE 802.16a: ‘Part 16: Air interface for fixed broadband wireless access systems – Amendment 2: media access control modifications and additional physical layer specifications for 2–11 GHz’, 2003.
    12. 12)
      • Feldman, J., Frigo, M., Abou-Faycal, I.: `A fast maximum-likelihood decoder for convolutional codes', Proc. IEEE Vehicular Technology Conf., September 2002, Vancouver, Canada, p. 371–375.
    13. 13)
    14. 14)
      • I.M. Onyszchuk . Truncation length for Viterbi decoding. IEEE Trans. Commun. , 7 , 1023 - 1026
    15. 15)
      • I. Chatzigeorgiou , M.R.D. Rodrigues , I.J. Wassell , R. Carrasco . Comparison of convolutional and turbo coding for broadband FWA systems. IEEE Trans. Broadcast. , 2 , 494 - 503
    16. 16)
      • A.J. Viterbi . Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory , 2 , 260 - 269
    17. 17)
      • S. Wicker . (1995) Error control systems for digital communication and storage.
    18. 18)
      • A.P. Hekstra . An alternative to metric rescaling in Viterbi decoders. IEEE Trans. Commun. , 11 , 1220 - 1222
    19. 19)
      • H. Bölcskei , A.J. Paulraj , K.V.S. Hari , R.U. Nabar , W.W. Lu . Fixed broadband wireless access: state of the art, challenges and future directions. IEEE Commun. Mag. , 1 , 100 - 108
    20. 20)
    21. 21)
      • IEEE 802.16a cont. IEEE 802.16.3c-01/29r4: ‘Channel models for fixed wireless applications’, 2003.
    22. 22)
      • H.-L. Lou . Implementing the Viterbi algorithm. IEEE Signal Process. Mag. , 5 , 42 - 52
    23. 23)
      • K. Kawazoe , S. Honda , S. Kubota , S. Kato . Ultra-high-speed and universal-coding-rate Viterbi decoder. IEICE Trans. Electron. , 12 , 1888 - 1894
    24. 24)
      • M. Bossert . (2000) Channel coding for telecommunications.
    25. 25)
      • P.J. Black , T.H. Meng . A 140-Mb/s, 32-state, radix-4 Viterbi decoder. IEEE J. Solid-State Circuits , 12 , 1877 - 1885
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2008.0596
Loading

Related content

content/journals/10.1049/iet-com.2008.0596
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address