Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Voronoi-based relay placement scheme for wireless sensor networks

Voronoi-based relay placement scheme for wireless sensor networks

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Energy consumption is a crucially important issue in battery-driven wireless sensor networks (WSNs). In most sensor networks, the sensors near the data collector (i.e. the sink) become drained more quickly than those elsewhere in the network since they are required to relay all of the data collected in the network to the sink. Therefore more balanced data paths to the sink should be established in order to extend the lifetime of the sensor network. Accordingly, a novel relay deployment scheme for WSNs based on the Voronoi diagram is proposed. The proposed scheme is applicable to both two-dimensional and three-dimensional network topologies and establishes effective routing paths that balance the traffic load within the sensor network and alleviate the burden on the sensors around the sink. Simulation results indicate that the number of relays deployed in the proposed scheme is similar to that deployed in the predetermined location scheme and is significantly less than that deployed in the minimum set cover scheme. Furthermore, the lifetime of the sensor network containing relay nodes deployed using the current scheme is longer than that achieved using either the predetermined location scheme or the minimum set cover scheme.

References

    1. 1)
      • Xu, K., Wang, Q., Hassanein, H., Takahara, G.: `Optimal wireless sensor networks (WSNs) deployment: minimum cost with lifetime constraint', Proc. IEEE Int. Conf. Wireless and Mobile Computing, Networking and Communications, August 2005, 3, p. 454–461.
    2. 2)
      • Y. Chen , C.-N. Chuah , Q. Zhao . Sensor placement for maximizing lifetime per unit cost in wireless sensor networks. Proc. IEEE Military Communications , 1097 - 1102
    3. 3)
      • G. Wang , G. Cao , T.F. La Porta . Movement-assisted sensor deployment. IEEE Trans. Mobile Comput. , 640 - 652
    4. 4)
      • Patel, M., Chandrasekaran, R., Venkatesan, S.: `Energy efficient sensor, relay and base station placements for coverage, connectivity and routing', Proc. IEEE Int. Conf. Performance, Computing, and Communications, April 2005, p. 581–586.
    5. 5)
      • Ergen, S.C., Varaiya, P.: `Optimal placement of relay nodes for energy efficiency in sensor networks', Proc. IEEE Int. Conf. Communications, June 2006, 8, p. 3473–3479.
    6. 6)
      • N. Khude , A. Kumar , A. Karnik . Time and energy complexity of distributed computation in wireless sensor networks. Proc. IEEE Infocom , 2625 - 2637
    7. 7)
      • N. Khajehnouri , A.H. Sayed . Distributed MMSE relay strategies for wireless sensor networks. IEEE Trans. Signal Process. , 3336 - 3348
    8. 8)
      • S. Fortune , D. Du , F. Hwang . Voronoi diagrams and Delaunay triangulations. Eucl. Geom. Comput. , 193 - 233
    9. 9)
      • Kashyap, A., Fangting, S., Shayman, M.: `Relay placement for minimizing congestion in wireless backbone networks', Proc. IEEE Wireless Communications and Networking Conf., 2006, 1, p. 159–164.
    10. 10)
      • L.H. Kian , W.K. Leow , M.H. Ang . Autonomic mobile sensor network with self-coordinated task allocation and execution. IEEE Trans. Syst. Man Cybern. C Appl. Rev. , 315 - 327
    11. 11)
      • C.Y. Chong , S.P. Kumar . Sensor networks: evolution, opportunities, and challenges. IEEE Proc. , 1247 - 1256
    12. 12)
      • D. Wenliang , D. Jing , Y.S. Han , P.K. Varshney . A key predistribution scheme for sensor networks using deployment knowledge. IEEE Trans. Dependable Secur. Comput. , 62 - 77
    13. 13)
      • I.F. Akyildiz , S. Weilian , Y. Sankarasubramaniam , E. Cayirci . A survey on sensor networks. IEEE Commun. Mag. , 102 - 114
    14. 14)
      • Q. Wang , M. Hempstead , W. Yang . A realistic power consumption model for wireless sensor network devices. Proc. IEEE Sensor and Ad Hoc Communications and Networks , 286 - 295
    15. 15)
      • Yu, Q., Zhou, H.: `Advanced MAC protocol with adjustable sleep mode for wireless sensor networks', Proc. Wireless Communications, Networking and Mobile Computing, September 2006, p. 1–4.
    16. 16)
      • J. Liu , M. Chu , J.E. Reich . Multitarget tracking in distributed sensor networks. IEEE Signal Process. Mag. , 36 - 46
    17. 17)
      • Lu, H.F., Chang, Y.C., Hu, H.H., Chen, J.L.: `Power-efficient scheduling method in sensor networks', Proc. IEEE SMC, October 2004, 5, p. 4705–4710.
    18. 18)
      • M. Rossi , M. Zorzi . Integrated cost-based MAC and routing techniques for hop count forwarding in wireless sensor networks. IEEE Trans. Mobile Comput. , 434 - 448
    19. 19)
      • W. Heinzelman , A. Chandrakasan , H. Balakrishnan . An application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wirel. Commun. , 660 - 670
    20. 20)
      • Carbunar, B., Grama, A., Vitek, J., Carbunar, O.: `Coverage preserving redundancy elimination in sensor networks', Proc. IEEE Int. Conf. Sensor and Ad Hoc Communication and Networks, 2004, p. 377–386.
    21. 21)
      • J. Cortes , S. Martinez , T. Karatas , F. Bullo . Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. , 243 - 255
    22. 22)
      • C. Intanagonwiwat , R. Govindan , D. Estrin , J. Heidemann , F. Silva . Directed diffusion for wireless sensor networking. IEEE Trans. Netw. , 2 - 16
    23. 23)
      • Q. Wang , K. Xu , G. Takahara , H. Hassanein . On lifetime-oriented device provisioning in heterogeneous wireless sensor networks: approaches and challenges. IEEE Netw. , 26 - 33
    24. 24)
      • W. Zhang . A probabilistic approach to tracking moving targets with distributed sensors. IEEE Trans. Syst. Man Cybern. A Syst. Humans , 721 - 731
    25. 25)
      • Suomela, J.: `Approximating relay placement in sensor networks', Proc. ACM Performance Evaluation of Wireless Ad Hoc, Sensor and Ubiquitous Networks, October 2006, p. 145–148.
    26. 26)
      • L. Snidaro , N. Ruixin , G.L. Foresti , P.K. Varshney . Quality-based fusion of multiple video sensors for video surveillance. IEEE Trans. Syst. Man Cybern. B Cybern. , 1044 - 1051
    27. 27)
      • E.L. Lloyd , X. Guoliang . Relay node placement in wireless sensor networks. IEEE Trans. Comput. , 134 - 138
    28. 28)
      • Kashyap, A., Khuller, S., Shayman, M.: `Relay placement for higher order connectivity in wireless sensor networks', Proc. IEEE Infocom, April 2006, Barcelona, Spain, p. 1–12.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2008.0204
Loading

Related content

content/journals/10.1049/iet-com.2008.0204
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address