Hardware variant NSP with security-aware automated preferential algorithm

Hardware variant NSP with security-aware automated preferential algorithm

For access to this article, please select a purchase option:

Buy eFirst article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Efficient and cost-effective hardware design of network security processor (NSP) is of vital importance in the present era due to the increasing need of security infrastructure in a wide range of computing applications. Here, the authors propose an NSP in field programmable gate array (FPGA) platform where according to a strict power, throughput, resource, and security priorities, a proposed preferential algorithm chooses a cipher suite to program the hardware. The choice is based on a rank list of available cipher suites depending on efficient system index evaluated in terms of power, throughput, resource, and security data and their given weights by the user. Encryption, hash, and key exchange algorithm along with their architectural variants serve excellent hardware flexibility whose bit files are stored in secure digital memory. The proposed design used an isolated key memory where secret keys are stored in encrypted form along with the hash value. The design is implemented using ISE14.4 suite with ZYNQ7z020-clg484 FPGA platform. The performances of the variants architecture of the crypto algorithms are considerably better in terms of power, throughput, and resource than the existing works reported in the literature.

Related content

This is a required field
Please enter a valid email address