http://iet.metastore.ingenta.com
1887

Static test compaction procedure for large pools of multicycle functional broadside tests

Static test compaction procedure for large pools of multicycle functional broadside tests

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study describes a static test compaction procedure that is applicable in the scenario where (i) a large pool of tests can be generated efficiently, but (ii) test compaction that modifies tests, and covering procedures, are not applicable, and (iii) reverse order fault simulation procedures are not sufficient for test compaction. The procedure has the ability to identify tests in the pool that are effective for test compaction even when they do not increase the fault coverage. This ability is achieved using only fault simulation with fault dropping. The procedure is designed for the case where multicycle functional broadside tests are extracted from functional test sequences. The use of multicycle tests results in higher levels of test compaction than possible with two-cycle functional broadside tests. It adds another dimension to the procedure that also needs to select a number of clock cycles for every test.

References

    1. 1)
      • J. Rearick .
        1. Rearick, J.: ‘Too much delay fault coverage is a bad thing’. Proc. Int. Test Conf., 2001, pp. 624633.
        . Proc. Int. Test Conf. , 624 - 633
    2. 2)
      • J. Saxena , K.M. Butler , V.B. Jayaram .
        2. Saxena, J., Butler, K.M., Jayaram, V.B., et al: ‘A case study of IR-drop in structured at-speed testing’. Proc. Int. Test Conf., 2003, pp. 10981104.
        . Proc. Int. Test Conf. , 1098 - 1104
    3. 3)
      • I. Pomeranz .
        3. Pomeranz, I.: ‘On the generation of scan-based test sets with reachable states for testing under functional operation conditions’. Proc. Design Autom. Conf., 2004, pp. 928933.
        . Proc. Design Autom. Conf. , 928 - 933
    4. 4)
      • Y.-C. Lin , F. Lu , K. Yang .
        4. Lin, Y.-C., Lu, F., Yang, K., et al: ‘Constraint extraction for pseudo-functional scan-based delay testing’. Proc. Asia and South Pacific Design Autom. Conf., 2005, pp. 166171.
        . Proc. Asia and South Pacific Design Autom. Conf. , 166 - 171
    5. 5)
      • I. Polian , F. Fujiwara .
        5. Polian, I., Fujiwara, F.: ‘Functional constraints vs. Test compression in scan-based delay testing’. Proc. Design, Autom. and Test in Europe Conf., 2006, pp. 16.
        . Proc. Design, Autom. and Test in Europe Conf. , 1 - 6
    6. 6)
      • I. Pomeranz , S.M. Reddy .
        6. Pomeranz, I., Reddy, S.M.: ‘Generation of functional broadside tests for transition faults’. IEEE Trans. Comput.-Aided Des., 2006, 25, (10), pp. 22072218.
        . IEEE Trans. Comput.-Aided Des. , 10 , 2207 - 2218
    7. 7)
      • S. Sde-Paz , E. Salomon .
        7. Sde-Paz, S., Salomon, E.: ‘Frequency and power correlation between at-speed scan and functional tests’. Proc. Int. Test Conf., 2008, Paper 13.3, pp. 19.
        . Proc. Int. Test Conf. , 1 - 9
    8. 8)
      • E.K. Moghaddam , J. Rajski , S.M. Reddy .
        8. Moghaddam, E.K., Rajski, J., Reddy, S.M., et al: ‘At-speed scan test with low switching activity’. Proc. VLSI Test Symp., 2010, pp. 177182.
        . Proc. VLSI Test Symp. , 177 - 182
    9. 9)
      • M. Valka , A. Bosio , L. Dilillo .
        9. Valka, M., Bosio, A., Dilillo, L., et al: ‘A functional power evaluation flow for defining test power limits during at-speed delay testing’. Proc. IEEE European Test Symp., 2011, pp. 153158.
        . Proc. IEEE European Test Symp. , 153 - 158
    10. 10)
      • T. Zhang , D.M.H. Walker .
        10. Zhang, T., Walker, D.M.H.: ‘Power supply noise control in pseudo functional test’. Proc. VLSI Test Symp., 2013, pp. 16.
        . Proc. VLSI Test Symp. , 1 - 6
    11. 11)
      • A. Touati , A. Bosio , L. Dilillo .
        11. Touati, A., Bosio, A., Dilillo, L., et al: ‘Exploring the impact of functional test programs re-used for power-aware testing’. Proc. Design, Automation & Test in Europe Conf., 2015, pp. 12771280.
        . Proc. Design, Automation & Test in Europe Conf. , 1277 - 1280
    12. 12)
      • I. Pomeranz .
        12. Pomeranz, I.: ‘Generation of close-to-functional broadside tests with equal primary input vectors’. Proc. Design Automation Conf., 2015.
        . Proc. Design Automation Conf.
    13. 13)
      • I. Pomeranz .
        13. Pomeranz, I.: ‘Piecewise-functional broadside tests based on reachable states’, IEEE Trans. Comput., 2015, 64, (8), pp. 24152420.
        . IEEE Trans. Comput. , 8 , 2415 - 2420
    14. 14)
      • P. Goel , B.C. Rosales .
        14. Goel, P., Rosales, B.C.: ‘Test generation and dynamic compaction of tests’. Proc. Test Conf., 1979, pp. 189192.
        . Proc. Test Conf. , 189 - 192
    15. 15)
      • I. Pomeranz , L.N. Reddy , S.M. Reddy .
        15. Pomeranz, I., Reddy, L.N., Reddy, S.M.: ‘COMPACTEST: a method to generate compact test sets for combinational circuits’. Proc. Int. Test Conf., 1991, pp. 194203.
        . Proc. Int. Test Conf. , 194 - 203
    16. 16)
      • L.N. Reddy , I. Pomeranz , S.M. Reddy .
        16. Reddy, L.N., Pomeranz, I., Reddy, S.M.: ‘ROTCO: a reverse order test compaction technique’. Proc. EURO-ASIC, 1992, pp. 189194.
        . Proc. EURO-ASIC , 189 - 194
    17. 17)
      • J.-S. Chang , C.-S. Lin .
        17. Chang, J.-S., Lin, C.-S.: ‘Test set compaction for combinational circuits’. Proc. Asian Test Symp., 1992, pp. 2025.
        . Proc. Asian Test Symp. , 20 - 25
    18. 18)
      • Y. Matsunaga .
        18. Matsunaga, Y.: ‘MINT -an exact algorithm for finding minimum test sets’, IEICE Trans. Fundam., 1993, E76-A, (10), pp. 16521658.
        . IEICE Trans. Fundam. , 10 , 1652 - 1658
    19. 19)
      • A.H. El-Maleh , Y.E. Osais .
        19. El-Maleh, A.H., Osais, Y.E.: ‘Test vector decomposition-based static compaction algorithms for combinational circuits’. ACM Trans. on Design Automation of Electronic Systems, October 2003, pp. 430459.
        . ACM Trans. on Design Automation of Electronic Systems , 430 - 459
    20. 20)
      • M. Abramovici , M.A. Breuer , A.D. Friedman . (1995)
        20. Abramovici, M., Breuer, M.A., Friedman, A.D.: ‘Digital systems testing and testable desgin’ (IEEE Press, New York, 1995).
        .
    21. 21)
      • D.S. Hochbaum .
        21. Hochbaum, D.S.: ‘An optimal test compression procedure for combinational circuits’, IEEE Trans. Comput.-Aided Des., 1996, 15, (10), pp. 12941299.
        . IEEE Trans. Comput.-Aided Des. , 10 , 1294 - 1299
    22. 22)
      • I. Pomeranz , S.M. Reddy .
        22. Pomeranz, I., Reddy, S.M.: ‘Stuck-at tuple-detection: a fault model based on stuck-at faults for improved defect coverage’. Proc. VLSI Test Symp., 1998, pp. 289294.
        . Proc. VLSI Test Symp. , 289 - 294
    23. 23)
      • M. Yilmaz , K. Chakrabarty , M. Tehranipoor .
        23. Yilmaz, M., Chakrabarty, K., Tehranipoor, M.: ‘Interconnect-aware and layout-oriented test-pattern selection for small-delay defects’. Proc. Int. Test Conf., 2008, pp. 110.
        . Proc. Int. Test Conf. , 1 - 10
    24. 24)
      • I. Pomeranz , S.M. Reddy .
        24. Pomeranz, I., Reddy, S.M.: ‘Forward-looking fault simulation for improved static compaction’, IEEE Trans. Comput.-Aided Des., 2001, 20, (10), pp. 12621265.
        . IEEE Trans. Comput.-Aided Des. , 10 , 1262 - 1265
    25. 25)
      • X. Lin , J. Rajski , I. Pomeranz .
        25. Lin, X., Rajski, J., Pomeranz, I., et al: ‘On static test compaction and test pattern ordering for scan designs’. Proc. Int. Test Conf., 2001, pp. 10881097.
        . Proc. Int. Test Conf. , 1088 - 1097
    26. 26)
      • S.Y. Lee , K.K. Saluja .
        26. Lee, S.Y., Saluja, K.K.: ‘Test application time reduction for sequential circuits with scan’, IEEE Trans. Comput.-Aided Des., 1995, 14, (9), pp. 11281140.
        . IEEE Trans. Comput.-Aided Des. , 9 , 1128 - 1140
    27. 27)
      • I. Pomeranz , S.M. Reddy .
        27. Pomeranz, I., Reddy, S.M.: ‘Static test compaction for scan-based designs to reduce test application time’. Proc. Asian Test Symp., 1998, pp. 198203.
        . Proc. Asian Test Symp. , 198 - 203
    28. 28)
      • I. Pomeranz , S.M. Reddy .
        28. Pomeranz, I., Reddy, S.M.: ‘Transparent scan: a new approach to test generation and test compaction for scan circuits that incorporates limited scan operations’, IEEE Trans. Comput.-Aided Des., 2003, 22, (12), pp. 16631670.
        . IEEE Trans. Comput.-Aided Des. , 12 , 1663 - 1670
    29. 29)
      • I. Park , E.J. McCluskey .
        29. Park, I., McCluskey, E.J.: ‘Launch-on-shift-capture transition tests’. Proc. Int. Test Conf., 2008, pp. 19.
        . Proc. Int. Test Conf. , 1 - 9
    30. 30)
      • D. Erb , K. Scheibler , M. Sauer .
        30. Erb, D., Scheibler, K., Sauer, M., et al: ‘Multi-cycle circuit parameter independent ATPG for interconnect open defects’. Proc. VLSI Test Symp., 2015, pp. 16.
        . Proc. VLSI Test Symp. , 1 - 6
    31. 31)
      • I. Pomeranz .
        31. Pomeranz, I.: ‘A multi-cycle test set based on a two-cycle test set with constant primary input vectors’, IEEE Trans. Comput.-Aided Des., 2015, 34, (7), pp. 11241132.
        . IEEE Trans. Comput.-Aided Des. , 7 , 1124 - 1132
    32. 32)
      • I. Pomeranz , S.M. Reddy .
        32. Pomeranz, I., Reddy, S.M.: ‘Primary input vectors to avoid in random test sequences for synchronous sequential circuits’, IEEE Trans. Comput.-Aided Des., 2008, 27, (1), pp. 193197.
        . IEEE Trans. Comput.-Aided Des. , 1 , 193 - 197
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2017.0239
Loading

Related content

content/journals/10.1049/iet-cdt.2017.0239
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address