access icon free Hybrid spin-CMOS stochastic spiking neuron for high-speed emulation of In vivo neuron dynamics

The spintronic stochastic spiking neuron (S3N) developed herein realises biologically mimetic stochastic spiking characteristics observed within in vivo cortical neurons, while operating several orders of magnitude more rapidly and exhibiting a favourable energy profile. This work leverages a novel probabilistic spintronic switching element device that provides thermally-driven and current-controlled tunable stochasticity in a compact, low-energy, and high-speed package. In order to close the loop, the authors utilise a second-order complementary metal-oxide-semiconductor (CMOS) synapse with variable weight control that accumulates incoming spikes into second-order transient current signals, which resemble the excitatory post-synaptic potentials found in biological neurons, and can be used to drive post-synaptic S3Ns. Simulation program with integrated circuit emphasis (SPICE) simulation results indicate that the equivalent of 1 s of in vivo neuronal spiking characteristics can be generated on the order of nanoseconds, enabling the feasibility of extremely rapid emulation of in vivo neuronal behaviours for future statistical models of cortical information processing. Their results also indicate that the S3N can generate spikes on the order of ten picoseconds while dissipating only 0.6–9.6 μW, depending on the spiking rate. Additionally, they demonstrate that an S3N can implement perceptron functionality, such as AND-gate- and OR-gate-based logic processing, and provide future extensions of the work to more advanced stochastic neuromorphic architectures.

Inspec keywords: neural nets

Other keywords: AND-gate-based logic processing; probabilistic spintronic switching element device; thermally-driven current-controlled tunable stochasticity; perceptron functionality; hybrid spin-CMOS stochastic spiking neuron; OR-gate-based logic processing; SPICE simulation; in vivo cortical neurons; S3N; spintronic stochastic spiking neuron; in vivo neuron dynamics; stochastic neuromorphic architectures; biologically mimetic stochastic spiking characteristics

Subjects: Neural net devices

References

    1. 1)
      • 38. Hong, S., Sayed, S., Datta, S.: ‘Spin circuit representation for the spin hall effect’, IEEE Trans. Nanotechnol., 2016, 15, (2), pp. 225236.
    2. 2)
      • 37. Camsari, K.Y., Ganguly, S., Datta, S.: ‘Modular approach to spintronics’, Scientific reports, 2015, 5.
    3. 3)
      • 28. Tuma, T., Pantazi, A., Gallo, M.L., et al: ‘Stochastic phase-change neurons’, Nat. Nanotechnol., 2016, 11, (8), pp. 693699.
    4. 4)
      • 52. Srinivasan, G., Sengupta, A., Roy, K.: ‘Magnetic tunnel junction based long-term short-term stochastic synapse for a spiking neural network with on-chip STDP learning’, Scientific Reports, 2016, 6, p. 29545.
    5. 5)
      • 8. Surace, S.C., Pfister, J.P.: ‘A statistical model for in vivo neuronal dynamics’, PLoS One, 2015, 10, (11), p. e0142435.
    6. 6)
      • 17. Indiveri, G., Linares-Barranco, B., Hamilton, T.J., et al: ‘Neuromorphic silicon neuron circuits’, Front. Neurosci., 2011, 5, pp. 123.
    7. 7)
      • 1. Rosenblatt, F.: ‘The perceptron, a perceiving and recognizing automaton Project Para’, Cornell Aeronautical Laboratory, 1957.
    8. 8)
      • 14. Wijekoon, J.H.B., Dudek, P.: ‘Compact silicon neuron circuit with spiking and bursting behaviour’, Neural Netw., 2008, 21, (2), pp. 524534.
    9. 9)
      • 50. Querlioz, D., Bichler, O., Vincent, A.F., et al: ‘Bioinspired programming of memory devices for implementing an inference engine’, Proc. IEEE, 2015, 103, (8), pp. 13981416.
    10. 10)
      • 26. Al-Shedivat, M., Naous, R., Cauwenberghs, G., et al: ‘Memristors empower spiking neurons with stochasticity’, IEEE J. Emerg. Sel. Topics Circuits Syst., 2015, 5, (2), pp. 242253.
    11. 11)
      • 36. Debashis, P., Faria, R., Camsari, K.Y., et al: ‘Experimental demonstration of nanomagnet networks as hardware for ising computing’. Electron Devices Meeting (IEDM), 2016 IEEE Int., 2016, pp. 17671770.
    12. 12)
      • 13. Yu, T., Cauwenberghs, G.: ‘Analog VLSI biophysical neurons and synapses with programmable membrane channel kinetics’, IEEE Trans. Biomed. Circuits Syst., 2010, 4, (3), pp. 139148.
    13. 13)
      • 20. Diehl, P.U., Pedroni, B.U., Cassidy, A., et al: ‘Truehappiness: neuromorphic emotion recognition on truenorth’. Neural Networks (IJCNN), 2016 Int. Joint Conf., 2016, pp. 42784285.
    14. 14)
      • 30. Srinivasan, G., Sengupta, A., Roy, K.: ‘Magnetic tunnel junction enabled all-spin stochastic spiking neural network’. 2017 Design, Automation & Test in Europe Conf. & Exhibition (DATE), 2017, pp. 530535.
    15. 15)
      • 44. Vodenicarevic, D., Locatelli, N., Mizrahi, A., et al: ‘Low-energy truly random number generation with superparamagnetic tunnel junctions for unconventional computing’, Phys. Rev. Appl., 2017, 8, (5), p. 054045.
    16. 16)
      • 4. Devadoss, A.V., Ligori, T.A.A.: ‘Stock prediction using artificial neural networks’, Int. J. Data Min. Tech. Appl., 2013, 2, pp. 283291.
    17. 17)
      • 49. Nessler, B., Pfeiffer, M., Buesing, L., et al: ‘Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity’, PLoS Comput. Biol., 2013, 9, (4), p. e1003037.
    18. 18)
      • 43. Choi, W.H., Lv, Y., Kim, J., et al: ‘A magnetic tunnel junction based true random number generator with conditional perturb and real-time output probability tracking’. Electron Devices Meeting (IEDM), 2014 IEEE Int., 2014, pp. 1215.
    19. 19)
      • 39. Zhao, W., Cao, Y.: ‘New generation of predictive technology model for sub-45 nm early design exploration’, IEEE Trans. Electron Devices, 2006, 53, (11), pp. 28162823, http://ptm.asu.edu/.
    20. 20)
      • 9. Ma, W.J., Beck, J.M., Latham, P.E., et al: ‘Bayesian inference with probabilistic population codes’, Nat. Neurosci., 2006, 9, (11), pp. 14321438.
    21. 21)
      • 51. Vincent, A.F., Larroque, J., Locatelli, N., et al: ‘Spin-transfer torque magnetic memory as a stochastic memristive synapse for neuromorphic systems’, IEEE Trans. Biomed. Circuits Syst., 2015, 9, (2), pp. 166174.
    22. 22)
      • 3. Koch, C., Segev, I., eds. ‘Methods in neuronal modeling: from ions to networks’ (MIT Press, Cambridge, Massachusetts, 1998).
    23. 23)
      • 45. Parks, B., Bapna, M., Igbokwe, J., et al: ‘Superparamagnetic perpendicular magnetic tunnel junctions for true random number generators’, AIP Adv., 2017, 8, (5), p. 055903.
    24. 24)
      • 29. Liyanagedera, C.M., Sengupta, A., Jaiswal, A., et al: ‘Magnetic tunnel junction enabled stochastic spiking neural networks: from non-telegraphic to telegraphic switching regime’, arXiv preprint arXiv:1709.09247, 2017.
    25. 25)
      • 10. Deco, G., Rolls, E.T., Romo, R.: ‘Stochastic dynamics as a principle of brain function’, Progress Neurobiol., 2009, 88, (1), pp. 116.
    26. 26)
      • 6. Churchland, P.S., Sejnowski, T.J.: ‘The computational brain’ (MIT press, Cambridge, Massachusetts, 2016).
    27. 27)
      • 33. Liu, L., Pai, C.F., Li, Y., et al: ‘Spin-torque switching with the giant spin hall effect of tantalum’, Science, 2012, 336, (6081), pp. 555558.
    28. 28)
      • 41. Wu, S.M., Cybart, S.A., Yi, D., et al: ‘Full electric control of exchange bias’, Phys. Rev. Lett., 2013, 110, (6), p. 067202.
    29. 29)
      • 18. Grassia, F., Levi, T., Kohno, T., et al: ‘Silicon neuron: digital hardware implementation of the quartic model’, J. Artif. Life Robot., 2014, 19, (3), pp. 215219.
    30. 30)
      • 19. Benjamin, B.V., Gao, P., McQuinn, E., et al: ‘Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations’, Proc. IEEE, 2014, 102, (5), pp. 699716.
    31. 31)
      • 23. Sharad, M., Fan, D., Roy, K.: ‘Spin-neurons: a possible path to energy-efficient neuromorphic computers’, J. Appl. Phys., 2013, 114, (23), p. 234906.
    32. 32)
      • 32. Sutton, B., Camsari, K.Y., Behin-Aein, B., et al: ‘Intrinsic optimization using stochastic nanomagnets’, Scientific Reports, 2017, 7.
    33. 33)
      • 40. Camsari, K.Y., Ganguly, S., Datta, D., et al: ‘Physics-based factorization of magnetic tunnel junctions for modeling and circuit simulation’. Electron Devices Meeting (IEDM), 2014 IEEE Int., 2014, pp. 3536.
    34. 34)
      • 35. Locatelli, N., Mizrahi, A., Accioly, A., et al: ‘Noise-enhanced synchronization of stochastic magnetic oscillators’, Phys. Rev. Appl., 2014, 2, (3), p. 034009.
    35. 35)
      • 27. Wijesinghe, P., Ankit, A., Sengupta, A., et al: ‘An all-memristor deep spiking neural network: a step towards realizing the low power, stochastic brain’, arXiv preprint arXiv:1712.01472, 2017.
    36. 36)
      • 7. Merolla, P.A., Arthur, J.V., Alvarez-Icaza, R., et al: ‘A million spiking-neuron integrated circuit with a scalable communication network and interface’, Science, 2014, 345, (6197), pp. 668673.
    37. 37)
      • 11. McDonnell, M.D., Ward, L.M.: ‘The benefits of noise in neural systems: bridging theory and experiment’, Nat. Rev. Neurosci., 2011, 12, (7), pp. 415426.
    38. 38)
      • 2. Hodgkin, A. L., Huxley, A.F.: ‘A quantitative description of membrane current and its application to conduction and excitation in nerve’, J. Physiol., 1952, 117, (4), pp. 500544.
    39. 39)
      • 22. Fan, D., Sharad, M., Sengupta, A., et al: ‘Hierarchical temporal memory based on spin-neurons and resistive memory for energy-efficient brain-inspired computing’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, (9), pp. 19071919.
    40. 40)
      • 5. Kar, A.: ‘Stock prediction using artificial neural networks’. Department of Computer Science and Engineering, IIT Kanpur, 1990.
    41. 41)
      • 42. Aggarwal, A., Horiuchi, T.K.: ‘Neuromorphic VLSI second-order synapse’, Electron. Lett., 2015, 51, (4), pp. 319321.
    42. 42)
      • 46. Lee, H., Ebrahimi, F., Amiri, P.K., et al: ‘Design of high-throughput and low-power true random number generator utilizing perpendicularly magnetized voltage-controlled magnetic tunnel junction’, AIP Adv., 2017, 7, (5), p. 055934.
    43. 43)
      • 53. Yu, S., Gao, B., Fang, Z., et al: ‘Stochastic learning in oxide binary synaptic device for neuromorphic computing’, Front. Neurosci., 2013, 7, pp. 19.
    44. 44)
      • 47. Camsari, K.Y., Salahuddin, S., Datta, S.: ‘Implementing p-bits with embedded MTJ’, IEEE Electron Device Lett., 2017, 38, (12), pp. 17671770.
    45. 45)
      • 31. Sengupta, A., Parsa, M., Han, B., et al: ‘Probabilistic deep spiking neural systems enabled by magnetic tunnel junction’. IEEE Trans. Electron Devices, 2016, 63, (7), pp. 29632970.
    46. 46)
      • 48. Buesing, L., Bill, J., Nessler, B., et al: ‘Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons’, PLoS Comput. Biol., 2011, 7, (11), p. e1002211.
    47. 47)
      • 12. Camsari, K.Y., Faria, R., Sutton, B.M., et al: ‘Stochastic p-bits for invertible logic’, Phys. Rev. X7, 2017, (3), p. 031014.
    48. 48)
      • 25. Hu, M., Wang, Y., Wen, W., et al: ‘Leveraging stochastic memristor devices in neuromorphic hardware systems’, IEEE J. Emerg. Sel. Topics Circuits Syst., 2016, 6, (2), pp. 235246.
    49. 49)
      • 24. Sharad, M., Fan, D., Roy, K.: ‘Ultra low power associative computing with spin neurons and resistive crossbar memory’. Design Automation Conf. (DAC), 2013 50th ACM/EDAC/IEEE, 2013, pp. 16.
    50. 50)
      • 34. Gosavi, T., Manipatruni, S., Aradhya, S., et al: ‘Experimental demonstration of efficient spin-orbit torque switching of an MTJ with sub-100 ns pulses’, IEEE Trans. Magn., 2017, 53, pp. 17.
    51. 51)
      • 21. Babacan, Y., Kaçar, F., Gürkan, K.: ‘A spiking and bursting neuron circuit based on memristor’, Neurocomputing, 2016, 203, pp. 8691.
    52. 52)
      • 15. Srivastava, S., Rathod, S.S.: ‘Silicon neuron-analog CMOS VLSI implementation and analysis at 180nm’. Devices, Circuits and Systems (ICDCS), 2016 3rd Int. Conf., 2016, pp. 2832.
    53. 53)
      • 16. Arthur, J.V., Boahen, K.A.: ‘Silicon-neuron design: a dynamical systems approach’, IEEE Trans. Circuits Syst. I Regul. Pap., 2011, 58, (5), pp. 10341043.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2017.0145
Loading

Related content

content/journals/10.1049/iet-cdt.2017.0145
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading