http://iet.metastore.ingenta.com
1887

Hybrid spin-CMOS stochastic spiking neuron for high-speed emulation of In vivo neuron dynamics

Hybrid spin-CMOS stochastic spiking neuron for high-speed emulation of In vivo neuron dynamics

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The spintronic stochastic spiking neuron (S3N) developed herein realises biologically mimetic stochastic spiking characteristics observed within in vivo cortical neurons, while operating several orders of magnitude more rapidly and exhibiting a favourable energy profile. This work leverages a novel probabilistic spintronic switching element device that provides thermally-driven and current-controlled tunable stochasticity in a compact, low-energy, and high-speed package. In order to close the loop, the authors utilise a second-order complementary metal-oxide-semiconductor (CMOS) synapse with variable weight control that accumulates incoming spikes into second-order transient current signals, which resemble the excitatory post-synaptic potentials found in biological neurons, and can be used to drive post-synaptic S3Ns. Simulation program with integrated circuit emphasis (SPICE) simulation results indicate that the equivalent of 1 s of in vivo neuronal spiking characteristics can be generated on the order of nanoseconds, enabling the feasibility of extremely rapid emulation of in vivo neuronal behaviours for future statistical models of cortical information processing. Their results also indicate that the S3N can generate spikes on the order of ten picoseconds while dissipating only 0.6–9.6 μW, depending on the spiking rate. Additionally, they demonstrate that an S3N can implement perceptron functionality, such as AND-gate- and OR-gate-based logic processing, and provide future extensions of the work to more advanced stochastic neuromorphic architectures.

References

    1. 1)
      • F. Rosenblatt .
        1. Rosenblatt, F.: ‘The perceptron, a perceiving and recognizing automaton Project Para’, Cornell Aeronautical Laboratory, 1957.
        .
    2. 2)
      • A. L. Hodgkin , A.F. Huxley .
        2. Hodgkin, A. L., Huxley, A.F.: ‘A quantitative description of membrane current and its application to conduction and excitation in nerve’, J. Physiol., 1952, 117, (4), pp. 500544.
        . J. Physiol. , 4 , 500 - 544
    3. 3)
      • (1998)
        3. Koch, C., Segev, I., eds. ‘Methods in neuronal modeling: from ions to networks’ (MIT Press, Cambridge, Massachusetts, 1998).
        .
    4. 4)
      • A.V. Devadoss , T.A.A. Ligori .
        4. Devadoss, A.V., Ligori, T.A.A.: ‘Stock prediction using artificial neural networks’, Int. J. Data Min. Tech. Appl., 2013, 2, pp. 283291.
        . Int. J. Data Min. Tech. Appl. , 283 - 291
    5. 5)
      • A. Kar .
        5. Kar, A.: ‘Stock prediction using artificial neural networks’. Department of Computer Science and Engineering, IIT Kanpur, 1990.
        .
    6. 6)
      • P.S. Churchland , T.J. Sejnowski . (2016)
        6. Churchland, P.S., Sejnowski, T.J.: ‘The computational brain’ (MIT press, Cambridge, Massachusetts, 2016).
        .
    7. 7)
      • P.A. Merolla , J.V. Arthur , R. Alvarez-Icaza .
        7. Merolla, P.A., Arthur, J.V., Alvarez-Icaza, R., et al: ‘A million spiking-neuron integrated circuit with a scalable communication network and interface’, Science, 2014, 345, (6197), pp. 668673.
        . Science , 6197 , 668 - 673
    8. 8)
      • S.C. Surace , J.P. Pfister .
        8. Surace, S.C., Pfister, J.P.: ‘A statistical model for in vivo neuronal dynamics’, PLoS One, 2015, 10, (11), p. e0142435.
        . PLoS One , e0142435
    9. 9)
      • W.J. Ma , J.M. Beck , P.E. Latham .
        9. Ma, W.J., Beck, J.M., Latham, P.E., et al: ‘Bayesian inference with probabilistic population codes’, Nat. Neurosci., 2006, 9, (11), pp. 14321438.
        . Nat. Neurosci. , 11 , 1432 - 1438
    10. 10)
      • G. Deco , E.T. Rolls , R. Romo .
        10. Deco, G., Rolls, E.T., Romo, R.: ‘Stochastic dynamics as a principle of brain function’, Progress Neurobiol., 2009, 88, (1), pp. 116.
        . Progress Neurobiol. , 1 , 1 - 16
    11. 11)
      • M.D. McDonnell , L.M. Ward .
        11. McDonnell, M.D., Ward, L.M.: ‘The benefits of noise in neural systems: bridging theory and experiment’, Nat. Rev. Neurosci., 2011, 12, (7), pp. 415426.
        . Nat. Rev. Neurosci. , 7 , 415 - 426
    12. 12)
      • K.Y. Camsari , R. Faria , B.M. Sutton .
        12. Camsari, K.Y., Faria, R., Sutton, B.M., et al: ‘Stochastic p-bits for invertible logic’, Phys. Rev. X7, 2017, (3), p. 031014.
        . Phys. Rev. X , 3 , 031014
    13. 13)
      • T. Yu , G. Cauwenberghs .
        13. Yu, T., Cauwenberghs, G.: ‘Analog VLSI biophysical neurons and synapses with programmable membrane channel kinetics’, IEEE Trans. Biomed. Circuits Syst., 2010, 4, (3), pp. 139148.
        . IEEE Trans. Biomed. Circuits Syst. , 3 , 139 - 148
    14. 14)
      • J.H.B. Wijekoon , P. Dudek .
        14. Wijekoon, J.H.B., Dudek, P.: ‘Compact silicon neuron circuit with spiking and bursting behaviour’, Neural Netw., 2008, 21, (2), pp. 524534.
        . Neural Netw. , 2 , 524 - 534
    15. 15)
      • S. Srivastava , S.S. Rathod .
        15. Srivastava, S., Rathod, S.S.: ‘Silicon neuron-analog CMOS VLSI implementation and analysis at 180nm’. Devices, Circuits and Systems (ICDCS), 2016 3rd Int. Conf., 2016, pp. 2832.
        . Devices, Circuits and Systems (ICDCS), 2016 3rd Int. Conf. , 28 - 32
    16. 16)
      • J.V. Arthur , K.A. Boahen .
        16. Arthur, J.V., Boahen, K.A.: ‘Silicon-neuron design: a dynamical systems approach’, IEEE Trans. Circuits Syst. I Regul. Pap., 2011, 58, (5), pp. 10341043.
        . IEEE Trans. Circuits Syst. I Regul. Pap. , 5 , 1034 - 1043
    17. 17)
      • G. Indiveri , B. Linares-Barranco , T.J. Hamilton .
        17. Indiveri, G., Linares-Barranco, B., Hamilton, T.J., et al: ‘Neuromorphic silicon neuron circuits’, Front. Neurosci., 2011, 5, pp. 123.
        . Front. Neurosci. , 1 - 23
    18. 18)
      • F. Grassia , T. Levi , T. Kohno .
        18. Grassia, F., Levi, T., Kohno, T., et al: ‘Silicon neuron: digital hardware implementation of the quartic model’, J. Artif. Life Robot., 2014, 19, (3), pp. 215219.
        . J. Artif. Life Robot. , 3 , 215 - 219
    19. 19)
      • B.V. Benjamin , P. Gao , E. McQuinn .
        19. Benjamin, B.V., Gao, P., McQuinn, E., et al: ‘Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations’, Proc. IEEE, 2014, 102, (5), pp. 699716.
        . Proc. IEEE , 5 , 699 - 716
    20. 20)
      • P.U. Diehl , B.U. Pedroni , A. Cassidy .
        20. Diehl, P.U., Pedroni, B.U., Cassidy, A., et al: ‘Truehappiness: neuromorphic emotion recognition on truenorth’. Neural Networks (IJCNN), 2016 Int. Joint Conf., 2016, pp. 42784285.
        . Neural Networks (IJCNN), 2016 Int. Joint Conf. , 4278 - 4285
    21. 21)
      • Y. Babacan , F. Kaçar , K. Gürkan .
        21. Babacan, Y., Kaçar, F., Gürkan, K.: ‘A spiking and bursting neuron circuit based on memristor’, Neurocomputing, 2016, 203, pp. 8691.
        . Neurocomputing , 86 - 91
    22. 22)
      • D. Fan , M. Sharad , A. Sengupta .
        22. Fan, D., Sharad, M., Sengupta, A., et al: ‘Hierarchical temporal memory based on spin-neurons and resistive memory for energy-efficient brain-inspired computing’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, (9), pp. 19071919.
        . IEEE Trans. Neural Netw. Learn. Syst. , 9 , 1907 - 1919
    23. 23)
      • M. Sharad , D. Fan , K. Roy .
        23. Sharad, M., Fan, D., Roy, K.: ‘Spin-neurons: a possible path to energy-efficient neuromorphic computers’, J. Appl. Phys., 2013, 114, (23), p. 234906.
        . J. Appl. Phys. , 23 , 234906
    24. 24)
      • M. Sharad , D. Fan , K. Roy .
        24. Sharad, M., Fan, D., Roy, K.: ‘Ultra low power associative computing with spin neurons and resistive crossbar memory’. Design Automation Conf. (DAC), 2013 50th ACM/EDAC/IEEE, 2013, pp. 16.
        . Design Automation Conf. (DAC), 2013 50th ACM/EDAC/IEEE , 1 - 6
    25. 25)
      • M. Hu , Y. Wang , W. Wen .
        25. Hu, M., Wang, Y., Wen, W., et al: ‘Leveraging stochastic memristor devices in neuromorphic hardware systems’, IEEE J. Emerg. Sel. Topics Circuits Syst., 2016, 6, (2), pp. 235246.
        . IEEE J. Emerg. Sel. Topics Circuits Syst. , 2 , 235 - 246
    26. 26)
      • M. Al-Shedivat , R. Naous , G. Cauwenberghs .
        26. Al-Shedivat, M., Naous, R., Cauwenberghs, G., et al: ‘Memristors empower spiking neurons with stochasticity’, IEEE J. Emerg. Sel. Topics Circuits Syst., 2015, 5, (2), pp. 242253.
        . IEEE J. Emerg. Sel. Topics Circuits Syst. , 2 , 242 - 253
    27. 27)
      • P. Wijesinghe , A. Ankit , A. Sengupta .
        27. Wijesinghe, P., Ankit, A., Sengupta, A., et al: ‘An all-memristor deep spiking neural network: a step towards realizing the low power, stochastic brain’, arXiv preprint arXiv:1712.01472, 2017.
        .
    28. 28)
      • T. Tuma , A. Pantazi , M.L. Gallo .
        28. Tuma, T., Pantazi, A., Gallo, M.L., et al: ‘Stochastic phase-change neurons’, Nat. Nanotechnol., 2016, 11, (8), pp. 693699.
        . Nat. Nanotechnol. , 8 , 693 - 699
    29. 29)
      • C.M. Liyanagedera , A. Sengupta , A. Jaiswal .
        29. Liyanagedera, C.M., Sengupta, A., Jaiswal, A., et al: ‘Magnetic tunnel junction enabled stochastic spiking neural networks: from non-telegraphic to telegraphic switching regime’, arXiv preprint arXiv:1709.09247, 2017.
        .
    30. 30)
      • G. Srinivasan , A. Sengupta , K. Roy .
        30. Srinivasan, G., Sengupta, A., Roy, K.: ‘Magnetic tunnel junction enabled all-spin stochastic spiking neural network’. 2017 Design, Automation & Test in Europe Conf. & Exhibition (DATE), 2017, pp. 530535.
        . 2017 Design, Automation & Test in Europe Conf. & Exhibition (DATE) , 530 - 535
    31. 31)
      • A. Sengupta , M. Parsa , B. Han .
        31. Sengupta, A., Parsa, M., Han, B., et al: ‘Probabilistic deep spiking neural systems enabled by magnetic tunnel junction’. IEEE Trans. Electron Devices, 2016, 63, (7), pp. 29632970.
        . IEEE Trans. Electron Devices , 7 , 2963 - 2970
    32. 32)
      • B. Sutton , K.Y. Camsari , B. Behin-Aein .
        32. Sutton, B., Camsari, K.Y., Behin-Aein, B., et al: ‘Intrinsic optimization using stochastic nanomagnets’, Scientific Reports, 2017, 7.
        .
    33. 33)
      • L. Liu , C.F. Pai , Y. Li .
        33. Liu, L., Pai, C.F., Li, Y., et al: ‘Spin-torque switching with the giant spin hall effect of tantalum’, Science, 2012, 336, (6081), pp. 555558.
        . Science , 6081 , 555 - 558
    34. 34)
      • T. Gosavi , S. Manipatruni , S. Aradhya .
        34. Gosavi, T., Manipatruni, S., Aradhya, S., et al: ‘Experimental demonstration of efficient spin-orbit torque switching of an MTJ with sub-100 ns pulses’, IEEE Trans. Magn., 2017, 53, pp. 17.
        . IEEE Trans. Magn. , 1 - 7
    35. 35)
      • N. Locatelli , A. Mizrahi , A. Accioly .
        35. Locatelli, N., Mizrahi, A., Accioly, A., et al: ‘Noise-enhanced synchronization of stochastic magnetic oscillators’, Phys. Rev. Appl., 2014, 2, (3), p. 034009.
        . Phys. Rev. Appl. , 3 , 034009
    36. 36)
      • P. Debashis , R. Faria , K.Y. Camsari .
        36. Debashis, P., Faria, R., Camsari, K.Y., et al: ‘Experimental demonstration of nanomagnet networks as hardware for ising computing’. Electron Devices Meeting (IEDM), 2016 IEEE Int., 2016, pp. 17671770.
        . Electron Devices Meeting (IEDM), 2016 IEEE Int. , 1767 - 1770
    37. 37)
      • K.Y. Camsari , S. Ganguly , S. Datta .
        37. Camsari, K.Y., Ganguly, S., Datta, S.: ‘Modular approach to spintronics’, Scientific reports, 2015, 5.
        .
    38. 38)
      • S. Hong , S. Sayed , S. Datta .
        38. Hong, S., Sayed, S., Datta, S.: ‘Spin circuit representation for the spin hall effect’, IEEE Trans. Nanotechnol., 2016, 15, (2), pp. 225236.
        . IEEE Trans. Nanotechnol. , 2 , 225 - 236
    39. 39)
      • W. Zhao , Y. Cao .
        39. Zhao, W., Cao, Y.: ‘New generation of predictive technology model for sub-45 nm early design exploration’, IEEE Trans. Electron Devices, 2006, 53, (11), pp. 28162823, http://ptm.asu.edu/.
        . IEEE Trans. Electron Devices , 11 , 2816 - 2823
    40. 40)
      • K.Y. Camsari , S. Ganguly , D. Datta .
        40. Camsari, K.Y., Ganguly, S., Datta, D., et al: ‘Physics-based factorization of magnetic tunnel junctions for modeling and circuit simulation’. Electron Devices Meeting (IEDM), 2014 IEEE Int., 2014, pp. 3536.
        . Electron Devices Meeting (IEDM), 2014 IEEE Int. , 35 - 36
    41. 41)
      • S.M. Wu , S.A. Cybart , D. Yi .
        41. Wu, S.M., Cybart, S.A., Yi, D., et al: ‘Full electric control of exchange bias’, Phys. Rev. Lett., 2013, 110, (6), p. 067202.
        . Phys. Rev. Lett. , 6 , 067202
    42. 42)
      • A. Aggarwal , T.K. Horiuchi .
        42. Aggarwal, A., Horiuchi, T.K.: ‘Neuromorphic VLSI second-order synapse’, Electron. Lett., 2015, 51, (4), pp. 319321.
        . Electron. Lett. , 4 , 319 - 321
    43. 43)
      • W.H. Choi , Y. Lv , J. Kim .
        43. Choi, W.H., Lv, Y., Kim, J., et al: ‘A magnetic tunnel junction based true random number generator with conditional perturb and real-time output probability tracking’. Electron Devices Meeting (IEDM), 2014 IEEE Int., 2014, pp. 1215.
        . Electron Devices Meeting (IEDM), 2014 IEEE Int. , 12 - 15
    44. 44)
      • D. Vodenicarevic , N. Locatelli , A. Mizrahi .
        44. Vodenicarevic, D., Locatelli, N., Mizrahi, A., et al: ‘Low-energy truly random number generation with superparamagnetic tunnel junctions for unconventional computing’, Phys. Rev. Appl., 2017, 8, (5), p. 054045.
        . Phys. Rev. Appl. , 5 , 054045
    45. 45)
      • B. Parks , M. Bapna , J. Igbokwe .
        45. Parks, B., Bapna, M., Igbokwe, J., et al: ‘Superparamagnetic perpendicular magnetic tunnel junctions for true random number generators’, AIP Adv., 2017, 8, (5), p. 055903.
        . AIP Adv. , 5 , 055903
    46. 46)
      • H. Lee , F. Ebrahimi , P.K. Amiri .
        46. Lee, H., Ebrahimi, F., Amiri, P.K., et al: ‘Design of high-throughput and low-power true random number generator utilizing perpendicularly magnetized voltage-controlled magnetic tunnel junction’, AIP Adv., 2017, 7, (5), p. 055934.
        . AIP Adv. , 5 , 055934
    47. 47)
      • K.Y. Camsari , S. Salahuddin , S. Datta .
        47. Camsari, K.Y., Salahuddin, S., Datta, S.: ‘Implementing p-bits with embedded MTJ’, IEEE Electron Device Lett., 2017, 38, (12), pp. 17671770.
        . IEEE Electron Device Lett. , 12 , 1767 - 1770
    48. 48)
      • L. Buesing , J. Bill , B. Nessler .
        48. Buesing, L., Bill, J., Nessler, B., et al: ‘Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons’, PLoS Comput. Biol., 2011, 7, (11), p. e1002211.
        . PLoS Comput. Biol. , e1002211
    49. 49)
      • B. Nessler , M. Pfeiffer , L. Buesing .
        49. Nessler, B., Pfeiffer, M., Buesing, L., et al: ‘Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity’, PLoS Comput. Biol., 2013, 9, (4), p. e1003037.
        . PLoS Comput. Biol. , e1003037
    50. 50)
      • D. Querlioz , O. Bichler , A.F. Vincent .
        50. Querlioz, D., Bichler, O., Vincent, A.F., et al: ‘Bioinspired programming of memory devices for implementing an inference engine’, Proc. IEEE, 2015, 103, (8), pp. 13981416.
        . Proc. IEEE , 8 , 1398 - 1416
    51. 51)
      • A.F. Vincent , J. Larroque , N. Locatelli .
        51. Vincent, A.F., Larroque, J., Locatelli, N., et al: ‘Spin-transfer torque magnetic memory as a stochastic memristive synapse for neuromorphic systems’, IEEE Trans. Biomed. Circuits Syst., 2015, 9, (2), pp. 166174.
        . IEEE Trans. Biomed. Circuits Syst. , 2 , 166 - 174
    52. 52)
      • G. Srinivasan , A. Sengupta , K. Roy .
        52. Srinivasan, G., Sengupta, A., Roy, K.: ‘Magnetic tunnel junction based long-term short-term stochastic synapse for a spiking neural network with on-chip STDP learning’, Scientific Reports, 2016, 6, p. 29545.
        . , 29545
    53. 53)
      • S. Yu , B. Gao , Z. Fang .
        53. Yu, S., Gao, B., Fang, Z., et al: ‘Stochastic learning in oxide binary synaptic device for neuromorphic computing’, Front. Neurosci., 2013, 7, pp. 19.
        . Front. Neurosci. , 1 - 9
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2017.0145
Loading

Related content

content/journals/10.1049/iet-cdt.2017.0145
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address