http://iet.metastore.ingenta.com
1887

Sign detector for the extended four-moduli set

Sign detector for the extended four-moduli set

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This work is an additional effort to improve the performance of a four-moduli set residue-based sign detector. The study proposes an arithmetic sign detector for the extended four-moduli set , where n and k are positive integers such that . The proposed arithmetic unit is built using carry-save adders and carry-generation circuits. When compared with the only sign detector available in the literature for a similar moduli set, the proposed one showed very slight reductions in area and power. However, it showed a huge reduction in time delay. Using very-large-scale integration tools, the presented sign detector achieved a reduction of (48.8–59.2)% in time delay.

References

    1. 1)
      • 1. Szabo, N., Tanaka, R.: ‘Residue arithmetic and its applications to computer technology’ (McGraw Hill, New York, 1967).
    2. 2)
      • 2. Soderstrand, M.A., Jenkins, W.K., Jullien, G., et al (Eds.): ‘Residue number system arithmetic: modern applications in digital signal processing’ (IEEE Press, New York, 1986).
    3. 3)
      • 3. Dutta, C.B., Garai, P., Sinha, A.: ‘Design of a reconfigurable DSP processor with bit efficient residue number system’, Int. J. VLSI Des. Commun. Syst. (VLSICS), 2012, 3, (5), pp. 175189.
    4. 4)
      • 4. Bajard, J., Meloni, N., Plantard, T.: ‘Efficient RNS bases for cryptography’. Proc. 17th IMACS World Congress: Scientific Computation, Applied Mathematics and Simulation, July 2005, pp. 17.
    5. 5)
      • 5. Antao, S., Bajard, J.-C., Sousa, L.: ‘Elliptic curve point multiplication on GPUs’. Proc. 21st IEEE Int. Conf. Application-Specific Systems, Architectures Processors, 2010, pp. 192199.
    6. 6)
      • 6. Wei, J., Guo, W., Liu, H., et al (Eds.): ‘A unified cryptographic processor for RSA and ECC in RNS’, Communications in Computer and Information Science (Springer, Berlin, 2013), pp. 1932.
    7. 7)
      • 7. Esmaeildoust, M., Schinianakis, D., Javashi, H., et al: ‘Efficient RNS implementation of elliptic curve point multiplication over GF(p)’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2013, 21, (8), pp. 15451549.
    8. 8)
      • 8. Hiasat, A., Abdel-Aty-Zohdy, H.: ‘Design and implementation of an RNS division algorithm’. IEEE Symp. on Comp. Arithmetic, July 1997, pp. 240249.
    9. 9)
      • 9. Sweidan, A., Hiasat, A.: ‘New efficient memoryless, residue to binary converter’, IEEE Trans. Circuits Syst., 1988, 35, (11), pp. 14411444.
    10. 10)
      • 10. Wang, W., Swamy, M., Ahmad, M., et al: ‘A study of the residue-to-binary converters for the three-moduli sets’, IEEE Trans. Circuits Syst. I, 2003, 50, (2), pp. 235243.
    11. 11)
      • 11. Cao, B., Chang, C.-H., Srikanthan, T.: ‘An efficient reverse converter for the 4-moduli sets (2n − 1, 2n, 2n + 1, 22n+1 + 1) based on the new Chinese remainder theorem’, IEEE Trans. Circuits Syst. I, 2003, 50, (10), pp. 12961303.
    12. 12)
      • 12. Mohan, P.V., Premkumar, A.B.: ‘RNS-to-binary converters for two four-moduli sets (2n− 1, 2n, 2n + 1, 2n+1− 1) and (2n− 1, 2n, 2n + 1, 2n+1 + 1)’, IEEE Trans. Circuits Syst. I, 2007, 54, (6), pp. 12451254.
    13. 13)
      • 13. Molahosseini, A., Navi, K., Dadkhah, C., et al: ‘Efficient reverse converter designs for the new 4-moduli sets (2n − 1, 2n, 2n + 1, 22n+1 − 1) and (2n − 1, 22n, 2n + 1, 22n + 1) based on new CRTs’, IEEE Trans. Circuits Syst. I, 2010, 57, (4), pp. 823835.
    14. 14)
      • 14. Sousa, L., Antao, S.: ‘MRC-based RNS reverse converters for the four-moduli sets (2n + 1, 2n− 1, 2n, 22n+1− 1) and (2n + 1, 2n− 1, 22n, 22n− 1)’, IEEE Trans. Circuits Syst. II, 2012, 59, (4), pp. 244248.
    15. 15)
      • 15. Patronik, P., Piestrak, S.: ‘Design of reverse converters for general RNS moduli set (2k, 2n − 1, 2n + 1, 2n+1 − 1) and (2k, 2n − 1, 2n + 1, 2n−1 − 1) (n even)’, IEEE Trans. Circuits Syst. I, 2014, 61, (6), pp. 16871700.
    16. 16)
      • 16. Patronik, P., Piestrak, S.: ‘Design of reverse converters for the new RNS moduli set ( 2n + 1, 2n − 1, 2n, 2n−1 + 1) (n odd)’, IEEE Trans. Circuits Syst. I, 2014, 61, (12), pp. 34363449.
    17. 17)
      • 17. Hiasat, A.: ‘A residue-to-binary converter for the extended four-moduli set {2n1, 2n + 1, 22n + 1, 22n+p}’, Trans. Very Large Scale Integr. (VLSI) Syst., 2017, 25, (7), pp. 21882192.
    18. 18)
      • 18. Hiasat, A.: ‘VLSI implementation of new arithmetic residue to binary decoders’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2005, 13, (1), pp. 153158.
    19. 19)
      • 19. Cao, B., Chang, C.-H., Srikanthan, T.: ‘A residue-to-binary converter for a new five-moduli set’, IEEE Trans. Circuits Syst. I, 2007, 54, (5), pp. 10411049.
    20. 20)
      • 20. Pettenghi, H., Chaves, R., Sousa, L.: ‘RNS reverse converters for moduli sets with dynamic ranges up to (8n +1)-bits’, IEEE Trans. Circuits Syst. I, 2013, 60, (6), pp. 14871500.
    21. 21)
      • 21. Ahmadifar, H., Jaberipur, G.: ‘A new residue number system with 5-moduli set: (22q, 2q ± 3, 2q ± 1)’, Comp. J., 2015, 58, (7), pp. 15481565.
    22. 22)
      • 22. Hiasat, A.: ‘A reverse converter and sign detectors for an extended RNS five moduli set’, IEEE Trans. Circuits Syst. TCAS-I, 2017, 64, (1), pp. 111121.
    23. 23)
      • 23. Pettenghi, H., Chaves, R., Sousa, L.: ‘Method to design general RNS reverse converters for extended moduli sets’, IEEE Trans. Circuits Syst. II, 2013, 60, (12), pp. 877881.
    24. 24)
      • 24. Hiasat, A.: ‘A suggestion for a fast residue multiplier for a family of moduli of the form (2n−(2p ± 1))’, Comput. J., 2004, 47, (1), pp. 93102.
    25. 25)
      • 25. Hiasat, A.: ‘RNS arithmetic multiplier for medium and large moduli’, IEEE Trans. Comput., 2000, 47, (8), pp. 937940.
    26. 26)
      • 26. Matutino, P., Pettenghi, H., Chaves, R., et al: ‘RNS arithmetic units for modulo (2n ± k)’. Proc. Euromicro Conf. Digital System Design, September 2012, p. 795802.
    27. 27)
      • 27. Conway, R., Nelson, J.: ‘Fast converter for 3 moduli RNS using new property of CRT’, IEEE Trans. Comput., 1999, 48, (8), pp. 852860.
    28. 28)
      • 28. Hiasat, A., Swiedan, A.: ‘Residue-to-binary decoder for an enhanced moduli set’, IET Proc. - Comput. Digit. Tech., 2004, 151, (2), pp. 127130.
    29. 29)
      • 29. Tomczak, T.: ‘Fast sign detection for RNS (2n − 1, 2n, 2n + 1)’, IEEE Trans. Circuits Syst. I, 2008, 55, (6), pp. 15021511.
    30. 30)
      • 30. Hiasat, A.: ‘New designs for a sign detector and a residue to binary converter’, IET Proc., Circuits Devices Syst., 1993, 140, (4), pp. 247252.
    31. 31)
      • 31. Hiasat, A.: ‘A sign detector for a group of moduli sets’, IEEE Trans. Comput., 2016, 65, (12), pp. 35803590.
    32. 32)
      • 32. Piotr, P., Piestrak, S.: ‘Design of RNS reverse converters with constant shifting to residue datapath channels’, J. Signal Process. Syst., 2017, pp. 117, doi: 10.1007/s11265-017-1238-6.
    33. 33)
      • 33. Sousa, L.: ‘2n RNS scalers for extended 4-moduli sets’, IEEE Trans. Comput., 2015, 64, (12), pp. 33223334.
    34. 34)
      • 34. Hiasat, A.: ‘Efficient RNS scalers for the extended three-moduli set (2n − 1, 2n+p, 2n + 1)’, IEEE Trans. Comput., 2017, 66, (7), pp. 12531260.
    35. 35)
      • 35. Chang, C.-H., Kumar, S.: ‘Area-efficient and fast sign detection for four-moduli set RNS (2n − 1, 2n, 2n + 1, 22n + 1)’. IEEE Int. Symp. on Circuits and Systems (ISCAS), July 2014, pp. 15401543.
    36. 36)
      • 36. Zimmermann, R.: ‘Efficient VLSI implementation of modulo (2n ± 1) addition and multiplication’. Proc. 14th IEEE Symp. on Computer Arithmetic, April 1999, pp. 158167.
    37. 37)
      • 37. Kalamboukas, L., Nikolos, D., Efstathiou, C., et al: ‘High-speed parallel-prefix modulo 2n − 1 adders’, IEEE Trans. Comput., 2000, 49, (7), pp. 673680.
    38. 38)
      • 38. Burch, R., Najm, F. N., Yang, P., et al: ‘A monte carlo approach for power estimation’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 1993, 1, (1), pp. 6371.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2017.0088
Loading

Related content

content/journals/10.1049/iet-cdt.2017.0088
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address