http://iet.metastore.ingenta.com
1887

Comparative analysis of network-on-chip simulation tools

Comparative analysis of network-on-chip simulation tools

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Network-on-chip (NoC) is a reliable and scalable communication paradigm deemed as an alternative to classic bus systems in modern systems-on-chip designs. Consequently, one can observe extensive multidimensional research related to the design and implementation of NoC-based systems. A basic requirement for most of these activities is the availability of NoC simulators that enable the study and comparison of different technologies. This study targets the analysis of different NoC simulators and highlights its contributions towards NoC research. Various NoC tools such as NoCTweak, Noxim, Nirgam, Nostrum, BookSim, WormSim, NOCMAP and ORION are evaluated and their strengths and weaknesses are highlighted. The comparative analysis includes methods for estimation of latency, throughput and energy consumption. Further, the exemplary real world application, video object plane decoder is mapped on a 2D mesh NoC using different mapping algorithms under NOCMAP and NoCTweak simulators for comparative analysis of the NoC simulators and their embedded mapping algorithms.

References

    1. 1)
      • 1. Benini, L., De Micheli, G.: ‘Networks on chips: a new SoC paradigm’, IEEE Comput. Soc., 2002, 35, (1), pp. 7078.
    2. 2)
      • 2. Dally, W.J., Towels, B.: ‘Route packets, not wires, on-chip interconnection networks’. Proc. 38th DAC, 2001, pp. 684689.
    3. 3)
      • 3. Choudhary, N.: ‘Network-on-chip: a new SoC communication infrastructure paradigm’, Int. J. Soft Comput. Eng., 2012, 1, (6), pp. 332335.
    4. 4)
      • 4. Mineo, C., Davis, W.R.: ‘The benefits of 3D networks-on-chip as shown with LDPC decoding’. IEEE Int. Conf. 3D System Integration, 2009. 3DIC2009, pp. 18.
    5. 5)
      • 5. Jantch, A., Tenhunen, H.: ‘Networks on chip’ (Kluwer Academic Publishers, 2003).
    6. 6)
      • 6. Gulzari, U.A., Anjum, S., Torres, F.S., et al: ‘A new cross-by-pass-torus architecture based on CBP-mesh and torus interconnection for on-chip communication’, PLoS ONEDecember 1, 2016, 11, (12), pp. 118, e0167590.
    7. 7)
      • 7. Gulzari, U.A., Khan, S., Anjum, S., et al: ‘An efficient and scalable cross-by-pass-mesh architecture for on-chip communication’, IET Comput. Digit. Tech., 2017, (11), pp. 140148.
    8. 8)
      • 8. Atienza, D., Angiolini, F., Murali, S., et al: ‘Network-on-chip design and synthesis outlook’, VLSI J., 2008, 41, pp. 340359.
    9. 9)
      • 9. Tsai, W.C., Lan, Y.C., Hu, Y.H., et al: ‘Networks on chips: structure and design methodologies’, Hindawi J. Electric. Comput. Eng., 2012, 2012, Article ID 509465, 15 pages.
    10. 10)
      • 10. Sahu, S., Kittur, H.M.: ‘Area and power efficient network-on-chip router architecture’. IEEE Conf. Information and Communication Technologies (ICT), 2013, pp. 855859.
    11. 11)
      • 11. Gehlot, P., Singh Chouhan, S.: ‘Performance evaluation of network-on-chip architectures’. Int. Conf. Emerging Trends in Electronic and Photonic Devices and Systems (ELECTRO-2009).
    12. 12)
      • 12. Kahng, A.B.: ‘ORION 2.0: a power-area simulator for interconnection networks’, IEEE Trans. VLSI Syst., 2012, 20, (1), p. 191.
    13. 13)
      • 13. Kahng, A.B, Lin, B., Nath, S.: ‘ORION 3.0: a comprehensive NoC router estimation tool’, IEEE Embedded Syst., 2015, 7, (2), pp. 4145.
    14. 14)
      • 14. Jain, L., Al-Hashimi, B., Gaur, M., et al: ‘NIRGAM: a simulator for NoC interconnect routing and application modeling’. Workshop on Diagnostic Services in Network-on-Chips, DATE, 2007, pp. 1620.
    15. 15)
      • 15. Fazzino, F., Palesi, M., Patti, D.: ‘Noxim: network-on-chip simulator’, 2008.
    16. 16)
      • 16. Catania, V., Mineo, A., Palesi, M., et al: ‘Cycle-accurate network-on-chip simulation with Noxim’, ACM Trans. Model. Comput. Simul., 2016, 27, (1), Article 4, 25 pages.
    17. 17)
      • 17. Tran, A.T., Baas, B.M.: ‘NoCTweak: a highly parameterizable simulator for early exploration of performance and energy of networks on chip’. Technical Report, VLSI Computation Lab, ECE Department, UC Davis, July, 2012.
    18. 18)
      • 18. Jiang, N.: ‘BookSim 2.0 user's guide’, May 7, 2013.
    19. 19)
      • 19. Lu, Z.: ‘NNSE: Nostrum network-on-chip simulation environment’. Swedish, System on Chip, 2005.
    20. 20)
      • 20. Murali, S., De Micheli, G.: ‘SUNMAP: a tool for automatic topology selection and generation for NoCs’. Proc. 41st Design Automation Conf., 2004, pp. 914919.
    21. 21)
      • 21. Jueping, C., Gang, H., Shaoli, W.: ‘OPNEC-Sim: an efficient simulation tool for network-on-Chip communication and energy performance analysis’. 10th IEEE Int. Conf. Solid-State and Integrated Circuit Technology (ICSICT), 2010, pp. 18921894.
    22. 22)
      • 22. Hossain, H., Ahmed, M., Al-Nayeem, A., et al: ‘Gpnocsim – a general purpose simulator for network-on-chip’. Int. Conf. Information and Communication Technology, 2007. ICICT ‘07.Dhaka, 2008.
    23. 23)
      • 23. Lis, M., Shim, K., Cho, M., et al: ‘DARSIM: a parallel cycle-level NoC simulator’. 6th Annual Workshop on Modeling, Benchmarking and Simulation, Saint Malo, France, June 2010, pp. 110.
    24. 24)
      • 24. Chan, J., Parameswaran, S.: ‘NoCGEN: a template based reuse methodology for networks on chip architecture’. IEEE 17th Int. Conf. VLSI Design, 2004, pp. 717720.
    25. 25)
      • 25. Cong, J., Gururaj, K., Han, G., et al: ‘MC-Sim: an efficient simulation tool for MPSoC designs’. IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD), 2008, pp. 364371.
    26. 26)
      • 26. Lv, M., Guo, Y., Guan, N., et al: ‘RTNoc: a simulation tool for real-Time communication scheduling on networks-on-Chips’. Int. Conf. Computer Science and Software Engineering, 2008, vol. 4, pp. 102105.
    27. 27)
      • 27. Hu, J., Marculescu, R.: ‘Energy-aware mapping for tile-based NoC architectures under performance constraints’. Asia and South Pacific Design Automation Conf., 2003, pp. 233239.
    28. 28)
      • 28. Tutsch, D., Lüdtke, D., Walter, A., et al: ‘CINSim – a component based interconnection network simulator for modeling dynamic reconfiguration’. Proc. 12th Int. Conf. ASMTA, 2005, pp. 132137.
    29. 29)
      • 29. Anjum, S., Munir, E.U.: ‘Simulation and performance evaluation of network-on-chip architectures and algorithms using CINSIM’, J. Basic Appl. Sci. Res., 2011, 1, (10), pp. 15941602.
    30. 30)
      • 30. Ning, W.: ‘Simulation and performance analysis of network-on-chip architectures using OPNET’, 1-4244-1132-7/07 © 2007 IEEE.
    31. 31)
      • 31. Ben-Itzhak, Y., Zahavi, E., Cidon, I., et al: ‘NoCs simulation framework for OMNeT++’. Fifth IEEE/ACM Int. Symp. Networks on Chip (NoCS), 2011, pp. 265266.
    32. 32)
      • 32. Kourdy, R., Yazdanpanah, S., Rad, M.R.N.: ‘Using the NS-2 network simulator for evaluating multi-Protocol label switching in network-on-Chip’. Second Int. Conf. Computer Research and Development, 2010, pp. 795799.
    33. 33)
      • 33. Marculescu, R., Ogras, U.Y., Peh, L.S., et al: ‘Outstanding research problems in NoC design: systems, micro architecture, and circuit perspectives’, IEEE Trans. Computer-Aided Des. Integr. Circ. Syst., 2009, 28, (1), pp. 0321.
    34. 34)
      • 34. Agarwal, A., Iskander, C., Shankar, R.: ‘Survey of network-on-chip (NoC) architectures & contributions’, J. Eng. Comput. Arch., 2009, 3, (1), pp. 115.
    35. 35)
      • 35. Abbas, A.: ‘A survey on energy-efficient methodologies and architectures of network-on-chip’, Comput. Electric. Eng. J., 2014, 40, (8), pp. 333347.
    36. 36)
      • 36. Kumar Sahu, P., Chattopadhyay, S.: ‘A survey on application mapping strategies for network-on-chip design’, J. Syst. Archit., 2013, 59, pp. 6076.
    37. 37)
      • 37. Ben Achballah, A., Ben Saoud, S.: ‘A survey of network-on-chip tools’, Int. J. Adv. Comput. Sci. Applic., 2013, 4, (9), p. 61.
    38. 38)
      • 38. Neuenhahn, M.C., Schleifer, J., Blume, H., et al: ‘Quantitative comparison of performance analysis techniques for modular and generic network-on-chip’, Adv. Radio Sci., 2009, 7, pp. 107112.
    39. 39)
      • 39. Alalaki, M.S, Agyeman, M.O: ‘A study of recent contribution on simulation tools for network-on-chip’, Int. J. Comput. Electric. Autom. Control Inf. Eng., 2017, 11, (4), pp. 3337.
    40. 40)
      • 40. Qian, Z., Bogdan, P., Tsui, C.-Y., et al: ‘Performance evaluation of NoC-based multicore systems: from traffic analysis to NoC latency modelling’, ACM Trans. Design Autom. Electron. Syst., 2016, 21, (3), pp. 138.
    41. 41)
      • 41. Ben-Itzhak, Y., Zahavi, E., Cidon, I., et al: ‘HNOCS: modular open-source simulator for heterogeneous NoCs’. Embedded Computer Systems (SAMOS), 2012 Int. Conf. Samos, 2013.
    42. 42)
      • 42. Fernandez-Alonso, E., Castells-Rufas, D., Joven, J.: ‘Survey of NoC and programming models proposals for MPSoC’, IJCSI Int. J. Comput. Sci. Issues, 2012, 9, (2), No 3, pp. 2232.
    43. 43)
      • 43. Amoretti, M.: ‘Modeling and simulation of network-on-chip systems with DEVS and DEUS’, Hindawi Sci. World J., 2014, 2014, Article ID 982569, pp. 19.
    44. 44)
      • 44. Dahir, N.S., Mak, T., Xia, F., et al: ‘Modeling and tools for power supply variations analysis in networks-on-chip’, IEEE Trans. Comput.’, 2014, 63, (3), pp. 679690.
    45. 45)
      • 45. Liu, W., Xu, J., Wu, X., et al: ‘A NoC traffic suite based on real applications’. IEEE Computer Society Annual Symp. VLSI (ISVLSI), 2011, pp. 6671.
    46. 46)
      • 46. Ghosh, D., Ghosal, P., Mohanty, S.P.: ‘A highly parameterizable simulator for performance analysis of NoC architectures’. Int. Conf. Information Technology (ICIT), 2014, pp. 311315.
    47. 47)
      • 47. Onizawa, N., Funazaki, T., Matsumoto, A., et al: ‘Asynchronous network-on-chip simulation based on a delay-aware mode’. IEEE Computer Society Annual Symp. VLSI, 2010, pp. 357362.
    48. 48)
      • 48. Genko, N., Atienza, D., De Micheli, G., et al: ‘Feature – NoC emulation: a tool and design flow for MPSoC’, IEEE Circuits Syst. Mag., 2007, 7, (4), pp. 4251.
    49. 49)
      • 49. Ogras, U.Y., Marculescu, R.: ‘It's a small world after all’: NoC performance optimization via long-range link insertion’, IEEE Trans. Very Large Scale Integr. Syst., 2006, 14, (7), pp. 693706.
    50. 50)
      • 50. Hu, J.: ‘Energy and performance aware mapping for regular NoC architectures’, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2005, 24, (4), pp. 551562.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2017.0068
Loading

Related content

content/journals/10.1049/iet-cdt.2017.0068
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address