http://iet.metastore.ingenta.com
1887

Variable length mixed radix MDC FFT/IFFT processor for MIMO-OFDM application

Variable length mixed radix MDC FFT/IFFT processor for MIMO-OFDM application

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a variable length multi-path delay commutator fast Fourier transform (FFT)/inverse FFT (IFFT) architecture for a multiple input multiple output orthogonal frequency division multiplexing system. It supports the FFT/ IFFT lengths of 512/256/128/64 samples to process each symbol carried by eight spatial streams and achieves a speed of 160 MHz to meet the IEEE 802.11ac timing requirements. A resource scheduling methodology to minimise the hardware complexity of the design is proposed and adopted in the architecture presented. A novel stagger word length strategy is also proposed and applied to achieve the better accuracy with lesser hardware. Here, the signal to quantisation noise ratio of 57.23 dB is obtained. The twiddle coefficient storage space is significantly compressed to achieve the coefficient generation with reduced hardware. The design is implemented using the TSMC-65 nm complementary metal oxide semiconductor technology with a supply voltage of 1 V at 160 MHz. The implementation results show that the architecture has a gate count of 3,48,013 with power consumption of 105.1 mW and area of 0.492 mm2. The hardware complexity and performance of the design are compared with earlier reported architectures. It is observed that the proposed design achieves better performance in terms of hardware complexity and normalised energy for the given specifications.

References

    1. 1)
      • 1. 802.11ac: ‘The fifth generation of Wi-Fi technical white paper’, Cisco, www.cisco.com, 2014.
        .
    2. 2)
      • 2. ‘IEEE 802.11ac 5 GHz wireless update and structured cabling implications’, Siemon, www.siemon.com, 2014.
        .
    3. 3)
      • (2013)
        3. IEEE Standard for Information technology - Telecommunications and information exchange between systems Local and metropolitan area networks – specific requirements – Part 11: ‘wireless LAN medium access control (MAC) and physical layer (PHY) specifications – Amendment 4: enhancements for very high throughput for operation in bands below 6 GHz’, 2013.
        .
    4. 4)
      • T. Sansaloni , A. Perez-Pascual , V. Torres .
        4. Sansaloni, T., Perez-Pascual, A., Torres, V., et al: ‘Efficient pipeline FFT processors for WLAN MIMO-OFDM systems’, Electron. Lett., 2005, 41, (19), pp. 10431044.
        . Electron. Lett. , 19 , 1043 - 1044
    5. 5)
      • C. Wang , Y. Yan , X. Fu .
        5. Wang, C., Yan, Y., Fu, X.: ‘A high-throughput low-complexity radix-24-22-23 FFT/IFFT processor with parallel and normal input/output order for IEEE 802.11 ad systems’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2015, 23, (11), pp. 27282732.
        . IEEE Trans. Very Large Scale Integr. (VLSI) Syst. , 11 , 2728 - 2732
    6. 6)
      • T. Cho , H. Lee .
        6. Cho, T., Lee, H.: ‘A high-speed low-complexity modified radix-25 FFT processor for high rate WPAN applications’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2013, 21, (1), pp. 187191.
        . IEEE Trans. Very Large Scale Integr. (VLSI) Syst. , 1 , 187 - 191
    7. 7)
      • Y. Jung , H. Yoon , J. Kim .
        7. Jung, Y., Yoon, H., Kim, J.: ‘New efficient FFT algorithm and pipeline implementation results for OFDM/DMT applications’, IEEE Trans. Consum. Electron., 2003, 49, (1), pp. 1420.
        . IEEE Trans. Consum. Electron. , 1 , 14 - 20
    8. 8)
      • S. He , M. Torkelson .
        8. He, S., Torkelson, M.: ‘Designing pipeline FFT processor for OFDM (de)modulation’. URSI Int. Symp. on Signals, Systems, and Electronics, Italy, September 1998, pp. 257262.
        . URSI Int. Symp. on Signals, Systems, and Electronics , 257 - 262
    9. 9)
      • K. Maharatna , E. Grass , U. Jagdhold .
        9. Maharatna, K., Grass, E., Jagdhold, U.: ‘A 64-point Fourier transform chip for high-speed wireless LAN application using OFDM’, IEEE J. Solid-State Circuits, 2004, 39, (3), pp. 484493.
        . IEEE J. Solid-State Circuits , 3 , 484 - 493
    10. 10)
      • B. Fu , P. Ampadu .
        10. Fu, B., Ampadu, P.: ‘An area efficient FFT/IFFT processor for MIMO-OFDM WLAN 802.11n’, J. Signal Process. Syst., 2009, 56, (1), pp. 5968.
        . J. Signal Process. Syst. , 1 , 59 - 68
    11. 11)
      • S.N. Tang , J.W. Tsai , T.Y. Chang .
        11. Tang, S.N., Tsai, J.W., Chang, T.Y.: ‘A 2.4-GS/s FFT processor for OFDM-based WPAN applications’, IEEE Trans. Circuits Syst. II, Express Briefs, 2010, 57, (6), pp. 451455.
        . IEEE Trans. Circuits Syst. II, Express Briefs , 6 , 451 - 455
    12. 12)
      • K.J. Yang , H.T. Shang , C.H.C. Gene .
        12. Yang, K.J., Shang, H.T., Gene, C.H.C.: ‘MDC FFT/IFFT processor with variable length for MIMO-OFDM systems’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2013, 21, (4), pp. 720731.
        . IEEE Trans. Very Large Scale Integr. (VLSI) Syst. , 4 , 720 - 731
    13. 13)
      • C. Yu , M.H. Yen .
        13. Yu, C., Yen, M.H.: ‘Area-efficient 128- to 2048/1536-point pipeline FFT processor for LTE and mobile WiMAX systems’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2015, 23, (9), pp. 17931800.
        . IEEE Trans. Very Large Scale Integr. (VLSI) Syst. , 9 , 1793 - 1800
    14. 14)
      • J. Chen , J. Hu , S. Lee .
        14. Chen, J., Hu, J., Lee, S., et al: ‘Hardware efficient mixed radix-25/16/9 FFT for LTE systems’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2015, 23, (2), pp. 221229.
        . IEEE Trans. Very Large Scale Integr. (VLSI) Syst. , 2 , 221 - 229
    15. 15)
      • S.N. Tang , C.H. Liao , T.Y. Chang .
        15. Tang, S.N., Liao, C.H., Chang, T.Y.: ‘An area-and energy-efficient multimode FFT processor for WPAN/WLAN/WMAN systems’, IEEE J. Solid-State Circuits, 2012, 47, (6), pp. 14191435.
        . IEEE J. Solid-State Circuits , 6 , 1419 - 1435
    16. 16)
      • Y.-W. Lin , C.-Y. Lee .
        16. Lin, Y.-W., Lee, C.-Y.: ‘Design of an FFT/IFFT processor for MIMO OFDM systems’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2007, 54, (4), pp. 807815.
        . IEEE Trans. Circuits Syst. I, Regul. Pap. , 4 , 807 - 815
    17. 17)
      • Y.-W. Lin , H.-Y. Liu , C.-Y. Lee .
        17. Lin, Y.-W., Liu, H.-Y., Lee, C.-Y.: ‘A 1-GS/s FFT/IFFT processor for UWB applications’, IEEE J. Solid-State Circuits, 2005, 40, (8), pp. 17261735.
        . IEEE J. Solid-State Circuits , 8 , 1726 - 1735
    18. 18)
      • G.R. Locharla , K.S. Kumar , K. Mahapatra .
        18. Locharla, G.R., Kumar, K.S., Mahapatra, K., et al: ‘Implementation of input data buffering and scheduling methodology for 8 parallel MDC FFT’. 19th Int. Symp. on VLSI Design and Test (VDAT), Ahmedabad, India, 2015, pp. 16.
        . 19th Int. Symp. on VLSI Design and Test (VDAT) , 1 - 6
    19. 19)
      • G.R. Locharla , K.S. Kumar , K. Mahapatra .
        19. Locharla, G.R., Kumar, K.S., Mahapatra, K., et al: ‘Implementation of MIMO data reordering and scheduling methodologies for 8-parallel variable length MDC FFT/IFFT’, IET Comput. Digit. Tech., 2016, 10, (5), pp. 215225.
        . IET Comput. Digit. Tech. , 5 , 215 - 225
    20. 20)
      • A.V. Oppenheim , R.W. Schafer . (1989)
        20. Oppenheim, A.V., Schafer, R.W.: ‘Discrete-time signal processing’ (Prentice hall, Englewood Cliffs, NJ, 1989).
        .
    21. 21)
      • M. Ayinala , M. Brown , K.K. Parhi .
        21. Ayinala, M., Brown, M., Parhi, K.K.: ‘Pipelined parallel FFT architectures via folding transformation’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2012, 20, (6), pp. 10681081.
        . IEEE Trans. Very Large Scale Integr. (VLSI) Syst. , 6 , 1068 - 1081
    22. 22)
      • M. Garrido , J. Grajal , M.A. Sánchez .
        22. Garrido, M., Grajal, J., Sánchez, M.A., et al: ‘Pipelined radix-2kfeedforward FFT architectures’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2013, 21, (1), pp. 2332.
        . IEEE Trans. Very Large Scale Integr. (VLSI) Syst. , 1 , 23 - 32
    23. 23)
      • C.T. Lin , Y.C. Yu , L.D. Van .
        23. Lin, C.T., Yu, Y.C., Van, L.D.: ‘Cost-effective triple-mode reconfigurable pipeline FFT/IFFT/2-D DCT processor’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2008, 16, (8), pp. 10581071.
        . IEEE Trans. Very Large Scale Integr. (VLSI) Syst. , 8 , 1058 - 1071
    24. 24)
      • Y. Chen , Y.C. Tsao , Y.W. Lin .
        24. Chen, Y., Tsao, Y.C., Lin, Y.W., et al: ‘An indexed-scaling pipelined FFT processor for OFDM-based WPAN applications’, IEEE Trans. Circuits Syst. II, Express Briefs, 2008, 55, (2), pp. 146150.
        . IEEE Trans. Circuits Syst. II, Express Briefs , 2 , 146 - 150
    25. 25)
      • S.J. Huang , S.-G. Chen .
        25. Huang, S.J., Chen, S.-G.: ‘A high-throughput radix-16 FFT processor with parallel and normal input/output ordering for IEEE 802.15.3c systems’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2012, 59, (8), pp. 17521765.
        . IEEE Trans. Circuits Syst. I, Regul. Pap. , 8 , 1752 - 1765
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2017.0018
Loading

Related content

content/journals/10.1049/iet-cdt.2017.0018
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address