http://iet.metastore.ingenta.com
1887

65-nm CMOS low-energy RNS modular multiplier for elliptic-curve cryptography

65-nm CMOS low-energy RNS modular multiplier for elliptic-curve cryptography

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Modular multiplication (MM) is the main operation in cryptography algorithms such as elliptic-curve cryptography (ECC) and Rivest–Shamir–Adleman, where repeated MM is used to perform elliptic curve point multiplication and modular exponentiation, respectively. The algorithm for the proposed architecture is derived from the Chinese remainder theorem and performs MM completely within a residue number system (RNS). Moreover, a 40-channel RNS moduli-set is proposed for this architecture to benefit from the short-channel width of the RNS moduli-set. The throughput of the architecture is enhanced by pipelining and pre-computations. The proposed architecture is fabricated as an ASIC using 65-nm CMOS technology. The measurement results are obtained for energy dissipation at different voltage levels from 0.43 to 1.25 V. The maximum throughput of the proposed design is 1037 Mbps while operating at a frequency of 162 MHz with an energy dissipation of 48 nJ. The proposed architecture enables the construction of low-voltage and energy-efficient ECCs.

References

    1. 1)
      • R.L. Rivest , A. Shamir , L.M. Adleman .
        1. Rivest, R.L., Shamir, A., Adleman, L.M.: ‘A method for obtaining digital signatures and public-key cryptosystems’, Commun. ACM, 1978, 21, (2), pp. 120126.
        . Commun. ACM , 2 , 120 - 126
    2. 2)
      • D. Hankerson , A.J. Menezes , S. Vanstone . (2003)
        2. Hankerson, D., Menezes, A.J., Vanstone, S.: ‘Guide to elliptic curve cryptography’ (Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003).
        .
    3. 3)
      • J.C. Bajard , L.S. Didier , P. Kornerup .
        3. Bajard, J.C., Didier, L.S., Kornerup, P., et al: ‘Some improvements on RNS Montgomery modular multiplication’. Advanced Signal Processing Algorithms, Architectures, and Implementations, Proc. SPIE, 2000, vol. 4116, pp. 214225.
        . Advanced Signal Processing Algorithms, Architectures, and Implementations, Proc. SPIE , 214 - 225
    4. 4)
      • Y. Tong-Jie , D. Zi-Bin , Y. Xiao-Hui .
        4. Tong-Jie, Y., Zi-Bin, D., Xiao-Hui, Y., et al: ‘An improved RNS Montgomery modular multiplier’. 2010 Int. Conf. Computer Application and System Modeling (ICCASM), October 2010, vol. 10, pp. V10-144V10-147.
        . 2010 Int. Conf. Computer Application and System Modeling (ICCASM) , V10 - 144
    5. 5)
      • F. Gandino , F. Lamberti , G. Paravati .
        5. Gandino, F., Lamberti, F., Paravati, G., et al: ‘An algorithmic and architectural study on Montgomery exponentiation in RNS’, IEEE Trans. Comput., 2012, 61, (8), pp. 10711083.
        . IEEE Trans. Comput. , 8 , 1071 - 1083
    6. 6)
      • N.S. Szabo , R.H. Tanaka . (1967)
        6. Szabo, N.S., Tanaka, R.H.: ‘Residue arithmetic and its applications to computer technology’ (McGraw-Hill, New York, 1967).
        .
    7. 7)
      • O. Aichholzer , H. Hassler .
        7. Aichholzer, O., Hassler, H.: ‘A fast method for modulus reduction in residue number system’. Proc. Economical Parallel Processing, 1993, pp. 4154.
        . Proc. Economical Parallel Processing , 41 - 54
    8. 8)
      • J.C. Bajard , L.S. Didier , P. Kornerup .
        8. Bajard, J.C., Didier, L.S., Kornerup, P.: ‘An RNS Montgomery modular multiplication algorithm’, IEEE Trans. Comput., 1998, 47, (7), pp. 766776.
        . IEEE Trans. Comput. , 7 , 766 - 776
    9. 9)
      • J.C. Bajard , L.S. Didier , P. Kornerup .
        9. Bajard, J.C., Didier, L.S., Kornerup, P.: ‘Modular multiplication and base extensions in residue number systems’. Proc. 15th IEEE Symp. Computer Arithmetic, 2001, vol. 2, pp. 5965.
        . Proc. 15th IEEE Symp. Computer Arithmetic , 59 - 65
    10. 10)
      • J.C. Bajard , L. Imbert .
        10. Bajard, J.C., Imbert, L.: ‘A full RNS implementation of RSA’, IEEE Trans. Comput., 2004, 53, (6), pp. 769774.
        . IEEE Trans. Comput. , 6 , 769 - 774
    11. 11)
      • Y. Kong , S. Asif , M. Khan .
        11. Kong, Y., Asif, S., Khan, M.: ‘Modular multiplication using the core function in the residue number system’, Appl. Algebra Eng. Commun. Comput., 2016, 27, (1), pp. 116.
        . Appl. Algebra Eng. Commun. Comput. , 1 , 1 - 16
    12. 12)
      • P.L. Montgomery .
        12. Montgomery, P.L.: ‘Modular multiplication without trial division’, Math. Comput., 1985, 44, (170), pp. 519521.
        . Math. Comput. , 170 , 519 - 521
    13. 13)
      • S. Kawamura , M. Koike , F. Sano .
        13. Kawamura, S., Koike, M., Sano, F., et al: ‘Cox-Rower architecture for fast parallel Montgomery multiplication’. Advances in Cryptology – Eurocrypt 2000, 2000 (LNCS, 1807), pp. 523538.
        . Advances in Cryptology – Eurocrypt 2000 , 523 - 538
    14. 14)
      • H. Nozaki , M. Motoyama , A. Shimbo .
        14. Nozaki, H., Motoyama, M., Shimbo, A., et al: ‘Implementation of RSA algorithm based on RNS Montgomery multiplication’. Proc. of Cryptographic Hardware and Embedded Systems (CHES 2001), September 2001, pp. 364376.
        . Proc. of Cryptographic Hardware and Embedded Systems (CHES 2001) , 364 - 376
    15. 15)
      • N. Guillermin .
        15. Guillermin, N.: ‘A coprocessor for secure and high speed modular arithmetic’. Report 2011/354, Cryptology ePrint Archive, 2011.
        .
    16. 16)
      • F. Gandino , F. Lamberti , P. Montuschi .
        16. Gandino, F., Lamberti, F., Montuschi, P., et al: ‘A general approach for improving RNS Montgomery exponentiation using pre-processing’. 2011 20th IEEE Symp. Computer Arithmetic (ARITH), July 2011, pp. 195204.
        . 2011 20th IEEE Symp. Computer Arithmetic (ARITH) , 195 - 204
    17. 17)
      • D. Schinianakis , A. Fournaris , H. Michail .
        17. Schinianakis, D., Fournaris, A., Michail, H., et al: ‘An RNS implementation of an Fp elliptic curve point multiplier’, IEEE Trans. Circuits Syst. I, 2009, 56, (6), pp. 12021213.
        . IEEE Trans. Circuits Syst. I , 6 , 1202 - 1213
    18. 18)
      • N. Guillermin .
        18. Guillermin, N.: ‘A high speed coprocessor for elliptic curve scalar multiplications over Fp’. Proc. of the 12th Int. Conf. Cryptographic Hardware and Embedded Systems, ser. CHES'10, 2010, pp. 4864.
        . Proc. of the 12th Int. Conf. Cryptographic Hardware and Embedded Systems, ser. CHES'10 , 48 - 64
    19. 19)
      • S. Antão , J.C. Bajard , L. Sousa .
        19. Antão, S., Bajard, J.C., Sousa, L.: ‘RNS-based elliptic curve point multiplication for massive parallel architectures’, Comput. J., 2012, 55, (5), pp. 629647.
        . Comput. J. , 5 , 629 - 647
    20. 20)
      • M. Esmaeildoust , D. Schinianakis , H. Javashi .
        20. Esmaeildoust, M., Schinianakis, D., Javashi, H., et al: ‘Efficient RNS implementation of elliptic curve point multiplication over GF(p)’, IEEE Trans. VLSI Syst., 2013, 21, (8), pp. 15451549.
        . IEEE Trans. VLSI Syst. , 8 , 1545 - 1549
    21. 21)
      • P. Barrett .
        21. Barrett, P.: ‘Implementing the Rivest, Shamir and Adleman public-key encryption algorithm on a standard digital signal processor’. Advances in Cryptology – Crypto 86, 1987 (LNCS, 263), pp. 311323.
        . Advances in Cryptology – Crypto 86 , 311 - 323
    22. 22)
      • D. Schinianakis , T. Stouraitis .
        22. Schinianakis, D., Stouraitis, T.: ‘An RNS Barrett modular multiplication architecture’. 2014 IEEE Int. Symp. Circuits and Systems (ISCAS), June 2014, pp. 22292232.
        . 2014 IEEE Int. Symp. Circuits and Systems (ISCAS) , 2229 - 2232
    23. 23)
      • S. Asif , Y. Kong .
        23. Asif, S., Kong, Y.: ‘Highly parallel modular multiplier for elliptic curve cryptography in residue number system’, Circuits Syst. Signal Process., 2017, 36, (3), pp. 10271051.
        . Circuits Syst. Signal Process. , 3 , 1027 - 1051
    24. 24)
      • P. Barrett .
        24. Barrett, P.: ‘Communications authentication and security using public key encryption – a design for implementation’. Master's thesis, Oxford University, September 1984.
        .
    25. 25)
      • J.-F. Dhem .
        25. Dhem, J.-F.: ‘Design of an efficient public-key cryptographic library for RISC based smart cards’. PhD dissertation, Université Catholique de Louvain, May 1998.
        .
    26. 26)
      • S.-R. Kuang , J.-P. Wang , K.-C. Chang .
        26. Kuang, S.-R., Wang, J.-P., Chang, K.-C., et al: ‘Energy-efficient high-throughput Montgomery modular multipliers for RSA cryptosystems’, IEEE Trans. VLSI Syst., 2013, 21, (11), pp. 19992009.
        . IEEE Trans. VLSI Syst. , 11 , 1999 - 2009
    27. 27)
      • M. Kaihara , N. Takagi .
        27. Kaihara, M., Takagi, N.: ‘Bipartite modular multiplication method’, IEEE Trans. Comput., 2008, 57, (2), pp. 157164.
        . IEEE Trans. Comput. , 2 , 157 - 164
    28. 28)
      • J. Neto , A. Ferreira Tenca , W. Ruggiero .
        28. Neto, J., Ferreira Tenca, A., Ruggiero, W.: ‘A parallel and uniform k-partition method for Montgomery multiplication’, IEEE Trans. Comput., 2014, 63, (9), pp. 21222133.
        . IEEE Trans. Comput. , 9 , 2122 - 2133
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2017.0017
Loading

Related content

content/journals/10.1049/iet-cdt.2017.0017
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address