Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Dependability analysis of cyber physical systems

As cyber physical system (CPS) is often used in safety critical areas, dependability of the system is an important issue that needs to be analysed. Any failure on the components of the CPS could result in a degradation of the physical state, which then causes major harm to life and/or property. Since the concept of dependence leads to that of trust, the subsystems of the CPS should be dependable to each other to deliver the requested services as specified without failing during its operation. In this study, the authors apply Markov chain to model and analyse the component dependability of CPSs and propose the recovery techniques to guarantee a high level of dependability so as to take care of assuring the continuity of system operation.

References

    1. 1)
      • 21. Matos, G., White, E.: ‘Application of dynamic reconfiguration in the design of fault-tolerant production cell’. 4th Int. Conf. Configurable Distribution Systems, Maryland, USA, 1998, pp. 29.
    2. 2)
      • 6. Henkel, J., Bauer, L., Dutt, N., et al: ‘Reliable on-chip systems in the nano-era: lessons learnt and future trends’. IEEE DAC, 2013, pp. 110.
    3. 3)
      • 19. Clark, M., Koutsoukos, X., Kumar, R., et al: ‘A study on run time assurance for complex cyber physical systems’. Technical Report 88ABW-2013-1876, U.S. Air Force Research Laboratory, 2013.
    4. 4)
      • 4. Miclea, L., Sanislav, T.: ‘About dependability in cyber-physical systems’. IEEE Design & Test Symp. (EWDTS), 2011, pp. 1721.
    5. 5)
      • 17. Wäfler, J., Heegaard, P.E.: ‘A combined structural and dynamic modelling approach for dependability analysis in smart grid’. Proc. 28th ACM Symp. on Applied Computing (SAC), Coimbra, Portugal, 2013, pp. 660665.
    6. 6)
      • 2. Poovendran, R.: ‘Cyber-physical systems: close encounters between two parallel worlds’, Proc. IEEE, 2010, 98, (8), pp. 13631366.
    7. 7)
      • 8. Rehman, S., Kriebel, F., Sun, D., et al: ‘Dtune: leveraging reliable code generation for adaptive dependability tuning under process variation and aging-induced effects’. DAC, 2014, pp. 16.
    8. 8)
      • 9. Shafique, M., Rehman, S., Aceituno, P.V., et al: ‘Exploiting program-level masking and error propagation for constrained reliability optimization’. Proc. of the 50th Annual Design Automation Conf., 2013, pp. 19.
    9. 9)
      • 12. Rehman, S., Kriebel, F., Shafique, M., et al: ‘Reliability-driven software transformations for unreliable hardware’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2014, 33, (11), pp. 15971610.
    10. 10)
      • 15. Rehman, S., Shafique, M., Aceituno, P.V., et al: ‘Leveraging variable function resilience for selective software reliability on unreliable hardware’. IEEE DATE, 2013, pp. 17591764.
    11. 11)
      • 11. Rehman, S., Shafique, M., Kriebel, F., et al: ‘Reliable software for unreliable hardware: embedded code generation aiming at reliability’. NY, USA, 2011, pp. 237246.
    12. 12)
      • 14. Shafique, M., Axer, P., Borchert, C., et al: ‘Multi-layer software reliability on unreliable hardware’, Inf. Technol., 2015, 2, p. 57.
    13. 13)
      • 10. Rehman, S., Chen, K.-H., Kriebel, F., et al: ‘Cross-layer software dependability on unreliable hardware’, IEEE Trans. Comput., 2016, 65, (1), pp. 8094.
    14. 14)
      • 7. Henkel, J., Bauer, L., Zhang, H., et al: ‘Multi-layer dependability: from microarchitecture to application level’. Proc. Design Automation Conf., 2014, pp. 16.
    15. 15)
      • 1. Denker, G., Dutt, N., Mehrotra, S., et al: ‘Resilient dependable cyber-physical systems: a middleware perspective’, J. Internet Serv. Appl,, 2012, 3, (1), pp. 4149.
    16. 16)
      • 18. Kadav, A., Renzelmann, M.J., Swift, M.M.: ‘Tolerating hardware device failures in software’ (ACM, USA, 2009).
    17. 17)
      • 13. Rehman, S., Toma, A., Kriebel, F., et al: ‘Reliable code generation and execution on unreliable hardware under joint functional and timing reliability considerations’, IEEE RTAS, 2013, pp. 273282.
    18. 18)
      • 16. Wan, K., Alagar, V.: ‘Dependable context-sensitive services in cyber physical systems’. Int. Joint Conf. of IEEE TrustCom-11, ICESS-11/FCST-11, 2011, pp. 687694.
    19. 19)
      • 3. Lee, E.A.: ‘Cyber physical systems, design challenges’. 11th IEEE Int. Symp. Object Oriented Real-Time Distributed Computing (ISORC), 2008, pp. 363369.
    20. 20)
      • 20. Pradhan, D.: ‘Fault-tolerant computer system design’ (Prentice Hall, Inc., Upper Saddle River, NJ, 1996, 1st edn.), pp. 514.
    21. 21)
      • 5. Zeng, R., Jiang, Y., Lin, C., et al: ‘Dependability analysis of control center networks in smart grid using stochastic petri nets’, IEEE Trans. Parallel Distrib. Syst., 2012, 23, pp. 17211730.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2016.0164
Loading

Related content

content/journals/10.1049/iet-cdt.2016.0164
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address