http://iet.metastore.ingenta.com
1887

Temperature gradient-aware thermal simulator for three-dimensional integrated circuits

Temperature gradient-aware thermal simulator for three-dimensional integrated circuits

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Nowadays, thermal simulators of integrated circuits (ICs) at architectural level tend to neglect thermal effects in temperature-dependent factors (such as leakage power and thermal conductivity) and a heat dissipation mechanism for thermal radiation at the early stages of IC design. Hence, the analysis results of thermal simulators may be not sufficient to reflect the physical–thermal interactive effects of ICs. This study presents a temperature gradient-aware thermal simulator for three-dimensional ICs (called 3D-TarGA) at the architectural level. The temperature gradient-aware thermal analysis of 3D-TarGA considers the thermal effects in leakage power, thermal conductivity, thermal radiation, and thermal convection to reflect the physical–thermal interactive effects of ICs at the early stages of IC design. Experimental results show that the maximum absolute error for the temperature of IC with ignoring the thermal effects using 3D-TarGA is 1.62°C, in contrast to the published thermal simulator, HotSpot. Moreover, the maximum absolute difference for the temperature of IC by considering the thermal effects is 2.7°C, as compared with that when ignoring the thermal effects for 3D-TarGA.

References

    1. 1)
      • Y. Chen , D. Niu , Y. Xie .
        1. Chen, Y., Niu, D., Xie, Y., et al: ‘Cost-effective integration of three-dimensional (3D) ICs emphasizing testing cost analysis’. IEEE Int. Conf. on Computer-Aided Design, November 2010, pp. 471476.
        . IEEE Int. Conf. on Computer-Aided Design , 471 - 476
    2. 2)
      • X. Dong , Y. Xie .
        2. Dong, X., Xie, Y.: ‘System-level cost analysis and design exploration for three-dimensional integrated circuits (3D ICs)’. IEEE Asia and South Pacific Design Automation Conf., January 2009, pp. 23424.
        . IEEE Asia and South Pacific Design Automation Conf. , 234 - 24
    3. 3)
      • S. Tarzia .
        3. Tarzia, S.: ‘A survey of 3D circuit integration’, 14 March 2008.
        .
    4. 4)
      • A. Gupta , S. Pasricha , N. Dutt .
        4. Gupta, A., Pasricha, S., Dutt, N., et al: ‘On chip communication-architecture based thermal management for SoCs’. Int. Symp. on VLSI Design, Automation and Test, April 2009, pp. 7679.
        . Int. Symp. on VLSI Design, Automation and Test , 76 - 79
    5. 5)
      • Y.-K. Cheng , C.-H. Tsai , C.C. Teng . (2000)
        5. Cheng, Y.-K., Tsai, C.-H., Teng, C.C., et al: ‘Electrothermal analysis of VLSI systems’ (Springer Press, New York, 2000).
        .
    6. 6)
      • K. Skadron , M.R. Stan , W. Huang .
        6. Skadron, K., Stan, M.R., Huang, W., et al: ‘Temperature-aware microarchitecture’. Int. Symp. on Computer Architecture, June 2003, pp. 213.
        . Int. Symp. on Computer Architecture , 2 - 13
    7. 7)
      • W. Huang , S. Ghosh , S. Velusamy .
        7. Huang, W., Ghosh, S., Velusamy, S., et al: ‘HotSpot: a compact thermal modeling methodology for early-stage VLSI design’, IEEE Trans. Very Large Scale Integr. Syst., 2006, 14, (5), pp. 501513.
        . IEEE Trans. Very Large Scale Integr. Syst. , 5 , 501 - 513
    8. 8)
      • Y. Yang , Z. Gu , C. Zhu .
        8. Yang, Y., Gu, Z., Zhu, C., et al: ‘ISAC: integrated space-and-time-adaptive chip-package thermal analysis’, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2007, 26, (1), pp. 8699.
        . IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. , 1 , 86 - 99
    9. 9)
      • T.-Y. Wang , C.C.-P. Chen .
        9. Wang, T.-Y., Chen, C.C.-P.: ‘3-D thermal-ADI: a linear-time chip level transient thermal simulator’, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2002, 21, (12), pp. 14341445.
        . IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. , 12 , 1434 - 1445
    10. 10)
      • K. Yoshinari , T. Kanazawa .
        10. Yoshinari, K., Kanazawa, T.: ‘Feasibility study for thermal conductivity simulation by coupling between admittance matrix method and finite elemental method’. 15th European Power Electronics and Applications, September 2013, pp. 18.
        . 15th European Power Electronics and Applications , 1 - 8
    11. 11)
      • A. Zjajo , N. van der Meijs , R. van Leuken .
        11. Zjajo, A., van der Meijs, N., van Leuken, R., et al: ‘Thermal analysis of 3D integrated circuits based on discontinuous Galerkin finite element method’. IEEE Int. Symp. on Quality Electronic Design, March 2012, pp. 117222.
        . IEEE Int. Symp. on Quality Electronic Design , 117 - 222
    12. 12)
      • W. Yu , T. Zhang , X. Yuan .
        12. Yu, W., Zhang, T., Yuan, X., et al: ‘Fast 3-D thermal simulation for integrated circuits with domain decomposition’, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2013, 32, (12), pp. 20142018.
        . IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. , 12 , 2014 - 2018
    13. 13)
      • Z. Hassan , N. Allec , L. Shang .
        13. Hassan, Z., Allec, N., Shang, L., et al: ‘Multiscale thermal analysis for nanometer-scale integrated circuits’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2009, 28, (6), pp. 860873.
        . IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. , 6 , 860 - 873
    14. 14)
      • A. Sridhar , A. Vincenzi , M. Ruggiero .
        14. Sridhar, A., Vincenzi, A., Ruggiero, M., et al: ‘3D-ICE: fast compact transient thermal modeling for 3D ICs with inter-tier liquid cooling’. IEEE/ACM Int. Conf. on Computer-Aided Design, November 2010, pp. 463470.
        . IEEE/ACM Int. Conf. on Computer-Aided Design , 463 - 470
    15. 15)
      • A. Sridhar , A. Vincenzi , D. Atienza .
        15. Sridhar, A., Vincenzi, A., Atienza, D., et al: ‘3D-ICE: a compact thermal model for early-stage design of liquid-cooled ICs’, IEEE Trans. Comput., 2014, 63, (10), pp. 25762589.
        . IEEE Trans. Comput. , 10 , 2576 - 2589
    16. 16)
      • L.-Y. Chiou , L.-Y. Lu , Z.-H. Chen .
        16. Chiou, L.-Y., Lu, L.-Y., Chen, Z.-H., et al: ‘System thermal analysis of 3D IC on ESL virtual platform’. IEEE Int. SoC Design Conf., November 2013, pp. 394397.
        . IEEE Int. SoC Design Conf. , 394 - 397
    17. 17)
      • M. Pedram , S. Nazarian .
        17. Pedram, M., Nazarian, S.: ‘Thermal modeling, analysis, and management in VLSI circuits: principles and methods’, Proc. IEEE, 2006, 94, (8), pp. 14871501.
        . Proc. IEEE , 8 , 1487 - 1501
    18. 18)
      • N.H. Weste , D.M. Harris . (2011)
        18. Weste, N.H., Harris, D.M.: ‘CMOS VLSI design: a circuits and systems perspective’ (Addison-Wesley Press, New York, 2011, 4th edn.).
        .
    19. 19)
      • Y.A. Cengel . (2002)
        19. Cengel, Y.A.: ‘Heat transfer: a practical approach’ (McGraw-Hill Press, New York, 2002, 2nd edn.).
        .
    20. 20)
      • T.L. Bergman , A.S. Lavine , F.P. Incropera . (2011)
        20. Bergman, T.L., Lavine, A.S., Incropera, F.P., et al: ‘Fundamentals of heat and mass transfer’ (John Wiley Press, New York, 2011, 7th edn.).
        .
    21. 21)
      • Z. Yu , D. Yergeau , R.W. Dutton .
        21. Yu, Z., Yergeau, D., Dutton, R.W., et al: ‘Full chip thermal simulation’. IEEE Int. Symp. on Quality Electronic Design, March 2000, pp. 145149.
        . IEEE Int. Symp. on Quality Electronic Design , 145 - 149
    22. 22)
      • S. Heo , K. Barr , K. Asanovic .
        22. Heo, S., Barr, K., Asanovic, K., et al: ‘Reducing power density though activity migration’. IEEE Int. Symp. on Lower Power Electronics and Design, August 2003, pp. 217222.
        . IEEE Int. Symp. on Lower Power Electronics and Design , 217 - 222
    23. 23)
      • B.K. Larkin .
        23. Larkin, B.K.: ‘Some stable explicit difference approximations to the diffusion equation’, Math. Comput., 1964, 18, (86), pp. 196202.
        . Math. Comput. , 86 , 196 - 202
    24. 24)
      • S.R.K. Iyengar , R.K. Jain . (2009)
        24. Iyengar, S.R.K., Jain, R.K.: ‘Numerical methods’ (New Age International Press, Darya Ganj, 2009).
        .
    25. 25)
      • Y. Joshi , P. Kumar . (2012)
        25. Joshi, Y., Kumar, P.: ‘Energy efficient thermal management of data centers’ (Springer Press, New York, 2012).
        .
    26. 26)
      • H.-C. Hsieh , P.-H. Huang , C.-H. Lin .
        26. Hsieh, H.-C., Huang, P.-H., Lin, C.-H., et al: ‘Stacking memory architecture exploration for three-dimensional integrated circuit in 3-D PAC’. IEEE Int. SoC Conf., September 2012, pp. 317321.
        . IEEE Int. SoC Conf. , 317 - 321
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2016.0149
Loading

Related content

content/journals/10.1049/iet-cdt.2016.0149
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address