http://iet.metastore.ingenta.com
1887

High-throughput multi-key elliptic curve cryptosystem based on residue number system

High-throughput multi-key elliptic curve cryptosystem based on residue number system

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Public-key cryptosystems such as elliptic curve cryptography (ECC) and Rivest–Shamir–Adleman (RSA) are widely used for data security in computing systems. ECC provides a high level of security with a much smaller key than RSA, which makes ECC a preferred choice in many applications. This study proposes a multi-key ECC based on the residue number system. The proposed architecture employees deep pipelining to allow the concurrent encryption of 21 keys. The proposed architectures are implemented on two different field programmable gate array (FPGA) platforms and results are compared with existing ECC architectures. The proposed implementation on Virtex-7 FPGA achieves a throughput of 1816 kbps at a clock frequency of 73 MHz.

References

    1. 1)
      • V.S. Miller . (1986)
        1. Miller, V.S.: ‘Advances in Cryptology — CRYPTO ‘85 Proceedings’ (Springer Berlin Heidelberg, Berlin, Heidelberg, 1986), chapter Use of Elliptic Curves in Cryptography, pp. 417426.
        .
    2. 2)
      • N. Koblitz .
        2. Koblitz, N.: ‘Elliptic curve cryptosystems’, Math. Comput., 1987, 48, (177), pp. 203209.
        . Math. Comput. , 177 , 203 - 209
    3. 3)
      • R.L. Rivest , A. Shamir , L.M. Adleman .
        3. Rivest, R.L., Shamir, A., Adleman, L.M.: ‘A method for obtaining digital signatures and public-key cryptosystems’, Commun. ACM, 1978, 21, (2), pp. 120126.
        . Commun. ACM , 2 , 120 - 126
    4. 4)
      • K.C.C. Loi , S.-B. Ko .
        4. Loi, K.C.C., Ko, S.-B.: ‘Scalable elliptic curve cryptosystem FPGA processor for NIST prime curves’, IEEE Trans. VLSI Syst., 2015, 23, (11), pp. 27532756.
        . IEEE Trans. VLSI Syst. , 11 , 2753 - 2756
    5. 5)
      • S. Ghosh , D. Mukhopadhyay , D. Roychowdhury .
        5. Ghosh, S., Mukhopadhyay, D., Roychowdhury, D.: ‘Petrel: Power and timing attack resistant elliptic curve scalar multiplier based on programmable gf(p) arithmetic unit’, IEEE Trans. Circuits Syst. I, 2011, 58, (8), pp. 17981812.
        . IEEE Trans. Circuits Syst. I , 8 , 1798 - 1812
    6. 6)
      • J.W. Lee , S.C. Chung , H.C. Chang .
        6. Lee, J.W., Chung, S.C., Chang, H.C., et al: ‘Efficient power-analysis-resistant dualfield elliptic curve cryptographic processor using heterogeneous dual-processing-element architecture’, IEEE Trans. VLSI Syst., 2014, 22, (1), pp. 4961.
        . IEEE Trans. VLSI Syst. , 1 , 49 - 61
    7. 7)
      • H. Marzouqi , M. Al-Qutayri , K. Salah .
        7. Marzouqi, H., Al-Qutayri, M., Salah, K.: ‘An FPGA implementation of NIST 256 prime field ECC processor’. 2013 IEEE 20th Int. Conf. on Electronics, Circuits, and Systems (ICECS), December 2013, pp. 493496.
        . 2013 IEEE 20th Int. Conf. on Electronics, Circuits, and Systems (ICECS) , 493 - 496
    8. 8)
      • N. Koblitz , A. Menezes , S. Vanstone .
        8. Koblitz, N., Menezes, A., Vanstone, S.: ‘The state of elliptic curve cryptography’, Des. Codes Cryptogr., 2000, 19, (2–3), pp. 173193.
        . Des. Codes Cryptogr. , 173 - 193
    9. 9)
      • (2000)
        9. National Institute of Standards and Technology, Digital Signature Standard, FIPS Publication 186-2’ (NIST, Gaithersburg, MD, USA, 2000).
        .
    10. 10)
      • G. Sutter , J. Deschamps , J. Imana .
        10. Sutter, G., Deschamps, J., Imana, J.: ‘Efficient elliptic curve point multiplication using digit-serial binary field operations’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 217225.
        . IEEE Trans. Ind. Electron. , 1 , 217 - 225
    11. 11)
      • W. Chelton , M. Benaissa .
        11. Chelton, W., Benaissa, M.: ‘Fast elliptic curve cryptography on FPGA’, IEEE Trans. VLSI Syst., 2008, 16, (2), pp. 198205.
        . IEEE Trans. VLSI Syst. , 2 , 198 - 205
    12. 12)
      • D. Hankerson , A.J. Menezes , S. Vanstone . (2003)
        12. Hankerson, D., Menezes, A.J., Vanstone, S.: ‘Guide to elliptic curve cryptography’ (Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003).
        .
    13. 13)
      • D. Schinianakis , A. Fournaris , H. Michail .
        13. Schinianakis, D., Fournaris, A., Michail, H., et al: ‘An RNS implementation of an Fp elliptic curve point multiplier’, IEEE Trans. Circuits Syst. I, 2009, 56, (6), pp. 12021213.
        . IEEE Trans. Circuits Syst. I , 6 , 1202 - 1213
    14. 14)
      • B. Baldwin , R.R. Goundar , M. Hamilton .
        14. Baldwin, B., Goundar, R.R., Hamilton, M., et al: ‘Co-z ECC scalar multiplications for hardware, software and hardware-software co-design on embedded systems’, J. Cryptogr. Eng., 2012, 2, (4), pp. 221240.
        . J. Cryptogr. Eng. , 4 , 221 - 240
    15. 15)
      • H. Alrimeih , D. Rakhmatov .
        15. Alrimeih, H., Rakhmatov, D.: ‘Fast and flexible hardware support for ECC over multiple standard prime fields’, IEEE Trans. VLSI Syst., 2014, 22, (12), pp. 26612674.
        . IEEE Trans. VLSI Syst. , 12 , 2661 - 2674
    16. 16)
      • M. Esmaeildoust , D. Schinianakis , H. Javashi .
        16. Esmaeildoust, M., Schinianakis, D., Javashi, H., et al: ‘Efficient RNS implementation of elliptic curve point multiplication over GF(p)’, IEEE Trans. VLSI Syst., 2013, 21, (8), pp. 15451549.
        . IEEE Trans. VLSI Syst. , 8 , 1545 - 1549
    17. 17)
      • N. Guillermin .
        17. Guillermin, N.: ‘A high speed coprocessor for elliptic curve scalar multiplications over Fp’. Proc. of the 12th Int. Conf. on Cryptographic Hardware and Embedded Systems, ser. CHES'10, Berlin, Heidelberg, 2010, pp. 4864.
        . Proc. of the 12th Int. Conf. on Cryptographic Hardware and Embedded Systems, ser. CHES'10 , 48 - 64
    18. 18)
      • K. Ananyi , H. Alrimeih , D. Rakhmatov .
        18. Ananyi, K., Alrimeih, H., Rakhmatov, D.: ‘Flexible hardware processor for elliptic curve cryptography over NIST prime fields’, IEEE Trans. VLSI Syst., 2009, 17, (8), pp. 10991112.
        . IEEE Trans. VLSI Syst. , 8 , 1099 - 1112
    19. 19)
      • S. Ghosh , M. Alam , D.R. Chowdhury .
        19. Ghosh, S., Alam, M., Chowdhury, D.R., et al: ‘Parallel crypto-devices for GF(p) elliptic curve multiplication resistant against side channel attacks’, Comput. Electr. Eng., 2009, 35, (2), pp. 329338.
        . Comput. Electr. Eng. , 2 , 329 - 338
    20. 20)
      • Z. Lim , B. Phillips , M. Liebelt .
        20. Lim, Z., Phillips, B., Liebelt, M.: ‘Elliptic curve digital signature algorithm over GF(p) on a residue number system enabled microprocessor’. TENCON 2009 – 2009 IEEE Region 10 Conf., January 2009, pp. 16.
        . TENCON 2009 – 2009 IEEE Region 10 Conf. , 1 - 6
    21. 21)
      • J.C. Bajard , L. Imbert , P.-Y. Liardet . (2004)
        21. Bajard, J.C., Imbert, L., Liardet, P.-Y., et al: ‘Cryptographic Hardware and Embedded Systems – CHES 2004: 6th International Workshop Cambridge, MA, USA, August 11–13, 2004. Proceedings’ (Springer Berlin Heidelberg, Berlin, Heidelberg, 2004), chapter Leak Resistant Arithmetic, pp. 6275.
        .
    22. 22)
      • N.S. Szabo , R.H. Tanaka . (1967)
        22. Szabo, N.S., Tanaka, R.H.: ‘Residue arithmetic and its applications to computer technology’ (McGraw Hill, New York, 1967).
        .
    23. 23)
      • C.V. Niras , Y. Kong .
        23. Niras, C.V., Kong, Y.: ‘Fast sign-detection algorithm for residue number system moduli set 2n − 1, 2n, 2n + 1 − 1’, IET Comput. Digit. Tech., 2016, 10, (2), pp. 5458.
        . IET Comput. Digit. Tech. , 2 , 54 - 58
    24. 24)
      • P. Longa , A. Miri .
        24. Longa, P., Miri, A.: ‘Fast and flexible elliptic curve point arithmetic over prime fields’, IEEE Trans. Comput., 2008, 57, (3), pp. 289302.
        . IEEE Trans. Comput. , 3 , 289 - 302
    25. 25)
      • S. Asif , Y. Kong .
        25. Asif, S., Kong, Y.: ‘Highly parallel modular multiplier for elliptic curve cryptography in residue number system’, Circuits Syst. Signal Process., 2017, 36, (3), pp. 10271051.
        . Circuits Syst. Signal Process. , 3 , 1027 - 1051
    26. 26)
      • J.-F. Dhem .
        26. Dhem, J.-F.: ‘Modified version of the Barrett modular multiplication algorithm’. Technical Report, UCL Crypto Group, Louvain-la-Neuve, 1994.
        .
    27. 27)
      • H. Marzouqi , M. Al-Qutayri , K. Salah .
        27. Marzouqi, H., Al-Qutayri, M., Salah, K., et al: ‘A high-speed FPGA implementation of an RSD-based ECC processor’, IEEE Trans. VLSI Syst., 2016, 24, (1), pp. 151164.
        . IEEE Trans. VLSI Syst. , 1 , 151 - 164
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2016.0141
Loading

Related content

content/journals/10.1049/iet-cdt.2016.0141
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address